Introduction To Lie Algebras

DOWNLOAD
Download Introduction To Lie Algebras PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Lie Algebras book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Introduction To Lie Algebras
DOWNLOAD
Author : K. Erdmann
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-09-28
Introduction To Lie Algebras written by K. Erdmann and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-09-28 with Mathematics categories.
Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.
Introduction To Lie Algebras And Representation Theory
DOWNLOAD
Author : J.E. Humphreys
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Introduction To Lie Algebras And Representation Theory written by J.E. Humphreys and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.
Introduction To Lie Groups And Lie Algebra 51
DOWNLOAD
Author : Arthur A. Sagle
language : en
Publisher: Elsevier
Release Date : 1986-08-12
Introduction To Lie Groups And Lie Algebra 51 written by Arthur A. Sagle and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 1986-08-12 with Mathematics categories.
Introduction to Lie Groups and Lie Algebra, 51
Lie Groups Lie Algebras And Representations
DOWNLOAD
Author : Brian C. Hall
language : en
Publisher: Springer Science & Business Media
Release Date : 2003-08-07
Lie Groups Lie Algebras And Representations written by Brian C. Hall and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-08-07 with Education categories.
This book provides an introduction to Lie groups, Lie algebras, and repre sentation theory, aimed at graduate students in mathematics and physics. Although there are already several excellent books that cover many of the same topics, this book has two distinctive features that I hope will make it a useful addition to the literature. First, it treats Lie groups (not just Lie alge bras) in a way that minimizes the amount of manifold theory needed. Thus, I neither assume a prior course on differentiable manifolds nor provide a con densed such course in the beginning chapters. Second, this book provides a gentle introduction to the machinery of semi simple groups and Lie algebras by treating the representation theory of SU(2) and SU(3) in detail before going to the general case. This allows the reader to see roots, weights, and the Weyl group "in action" in simple cases before confronting the general theory. The standard books on Lie theory begin immediately with the general case: a smooth manifold that is also a group. The Lie algebra is then defined as the space of left-invariant vector fields and the exponential mapping is defined in terms of the flow along such vector fields. This approach is undoubtedly the right one in the long run, but it is rather abstract for a reader encountering such things for the first time.
Introduction To Lie Algebras
DOWNLOAD
Author : Karin Erdmann
language : en
Publisher:
Release Date : 2006
Introduction To Lie Algebras written by Karin Erdmann and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with categories.
An Introduction To Lie Groups And Lie Algebras
DOWNLOAD
Author : Alexander A. Kirillov
language : en
Publisher: Cambridge University Press
Release Date : 2008-07-31
An Introduction To Lie Groups And Lie Algebras written by Alexander A. Kirillov and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-07-31 with Mathematics categories.
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.
Introduction To Lie Algebras And Representation Theory
DOWNLOAD
Author : James E. Humphreys
language : en
Publisher:
Release Date : 1997
Introduction To Lie Algebras And Representation Theory written by James E. Humphreys and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with categories.
Representations Of Lie Algebras
DOWNLOAD
Author : Anthony Henderson
language : en
Publisher:
Release Date : 2012
Representations Of Lie Algebras written by Anthony Henderson and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with categories.
This bold and refreshing approach to Lie algebras assumes only modest prerequisites (linear algebra up to the Jordan canonical form and a basic familiarity with groups and rings), yet it reaches a major result in representation theory: the highest-weight classification of irreducible modules of the general linear Lie algebra. The author's exposition is focused on this goal rather than aiming at the widest generality and emphasis is placed on explicit calculations with bases and matrices. The book begins with a motivating chapter explaining the context and relevance of Lie algebras and their representations and concludes with a guide to further reading. Numerous examples and exercises with full solutions are included. Based on the author's own introductory course on Lie algebras, this book has been thoroughly road-tested by advanced undergraduate and beginning graduate students and it is also suited to individual readers wanting an introduction to this important area of mathematics.
Introduction To Lie Groups And Lie Algebras
DOWNLOAD
Author : Arthur A. Sagle
language : en
Publisher:
Release Date : 1986
Introduction To Lie Groups And Lie Algebras written by Arthur A. Sagle and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1986 with categories.
Lie Groups Lie Algebras And Representations
DOWNLOAD
Author : Brian Hall
language : en
Publisher: Springer
Release Date : 2015-05-11
Lie Groups Lie Algebras And Representations written by Brian Hall and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-05-11 with Mathematics categories.
This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette