[PDF] Introduction To Machine Learning Professional Level - eBooks Review

Introduction To Machine Learning Professional Level


Introduction To Machine Learning Professional Level
DOWNLOAD

Download Introduction To Machine Learning Professional Level PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Machine Learning Professional Level book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Introduction To Machine Learning Professional Level


Introduction To Machine Learning Professional Level
DOWNLOAD
Author : CPA John Kimani
language : en
Publisher: Finstock Evarsity Publishers
Release Date : 2023-08-01

Introduction To Machine Learning Professional Level written by CPA John Kimani and has been published by Finstock Evarsity Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-01 with Computers categories.


BOOK SUMMARY The main topics in this book are; • Introduction to Machine Learning • Data Preprocessing and Cleaning • Supervised Learning • Supervised Learning • Unsupervised Learning • Unsupervised Learning • Model Evaluation and Selection • Model Deployment and Applications “Introduction to Machine Learning” is a comprehensive and well-structured book that delves into the core principles and methodologies of machine learning. The book emphasizes a hands-on approach, providing readers with the necessary tools and techniques to build and deploy machine learning models effectively.



Introduction To Deep Learning Business Applications For Developers


Introduction To Deep Learning Business Applications For Developers
DOWNLOAD
Author : Armando Vieira
language : en
Publisher: Apress
Release Date : 2018-05-02

Introduction To Deep Learning Business Applications For Developers written by Armando Vieira and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-02 with Computers categories.


Discover the potential applications, challenges, and opportunities of deep learning from a business perspective with technical examples. These applications include image recognition, segmentation and annotation, video processing and annotation, voice recognition, intelligent personal assistants, automated translation, and autonomous vehicles. An Introduction to Deep Learning Business Applications for Developers covers some common DL algorithms such as content-based recommendation algorithms and natural language processing. You’ll explore examples, such as video prediction with fully convolutional neural networks (FCNN) and residual neural networks (ResNets). You will also see applications of DL for controlling robotics, exploring the DeepQ learning algorithm with Monte Carlo Tree search (used to beat humans in the game of Go), and modeling for financial risk assessment. There will also be mention of the powerful set of algorithms called Generative Adversarial Neural networks (GANs) that can be applied for image colorization, image completion, and style transfer. After reading this book you will have an overview of the exciting field of deep neural networks and an understanding of most of the major applications of deep learning. The book contains some coding examples, tricks, and insights on how to train deep learning models using the Keras framework. What You Will Learn Find out about deep learning and why it is so powerful Work with the major algorithms available to train deep learning models See the major breakthroughs in terms of applications of deep learning Run simple examples with a selection of deep learning libraries Discover the areas of impact of deep learning in business Who This Book Is For Data scientists, entrepreneurs, and business developers.



Aws Certification Guide Aws Certified Machine Learning Specialty


Aws Certification Guide Aws Certified Machine Learning Specialty
DOWNLOAD
Author : Cybellium
language : en
Publisher: Cybellium Ltd
Release Date :

Aws Certification Guide Aws Certified Machine Learning Specialty written by Cybellium and has been published by Cybellium Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


AWS Certification Guide - AWS Certified Machine Learning – Specialty Unleash the Potential of AWS Machine Learning Embark on a comprehensive journey into the world of machine learning on AWS with this essential guide, tailored for those pursuing the AWS Certified Machine Learning – Specialty certification. This book is a valuable resource for professionals seeking to harness the power of AWS for machine learning applications. Inside, You'll Explore: Foundational to Advanced ML Concepts: Understand the breadth of AWS machine learning services and tools, from SageMaker to DeepLens, and learn how to apply them in various scenarios. Practical Machine Learning Scenarios: Delve into real-world examples and case studies, illustrating the practical applications of AWS machine learning technologies in different industries. Targeted Exam Preparation: Navigate the certification exam with confidence, thanks to detailed insights into the exam format, including specific chapters aligned with the certification objectives and comprehensive practice questions. Latest Trends and Best Practices: Stay at the forefront of machine learning advancements with up-to-date coverage of the latest AWS features and industry best practices. Written by a Machine Learning Expert Authored by an experienced practitioner in AWS machine learning, this guide combines in-depth knowledge with practical insights, providing a rich and comprehensive learning experience. Your Comprehensive Resource for ML Certification Whether you are deepening your existing machine learning skills or embarking on a new specialty in AWS, this book is your definitive companion, offering an in-depth exploration of AWS machine learning services and preparing you for the Specialty certification exam. Advance Your Machine Learning Career Beyond preparing for the exam, this guide is about mastering the complexities of AWS machine learning. It's a pathway to developing expertise that can be applied in innovative and transformative ways across various sectors. Start Your Specialized Journey in AWS Machine Learning Set off on your path to becoming an AWS Certified Machine Learning specialist. This guide is your first step towards mastering AWS machine learning and unlocking new opportunities in this exciting and rapidly evolving field. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com



Official Google Cloud Certified Professional Machine Learning Engineer Study Guide


Official Google Cloud Certified Professional Machine Learning Engineer Study Guide
DOWNLOAD
Author : Mona Mona
language : en
Publisher: John Wiley & Sons
Release Date : 2023-10-27

Official Google Cloud Certified Professional Machine Learning Engineer Study Guide written by Mona Mona and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-27 with Computers categories.


Expert, guidance for the Google Cloud Machine Learning certification exam In Google Cloud Certified Professional Machine Learning Study Guide, a team of accomplished artificial intelligence (AI) and machine learning (ML) specialists delivers an expert roadmap to AI and ML on the Google Cloud Platform based on new exam curriculum. With Sybex, you’ll prepare faster and smarter for the Google Cloud Certified Professional Machine Learning Engineer exam and get ready to hit the ground running on your first day at your new job as an ML engineer. The book walks readers through the machine learning process from start to finish, starting with data, feature engineering, model training, and deployment on Google Cloud. It also discusses best practices on when to pick a custom model vs AutoML or pretrained models with Vertex AI platform. All technologies such as Tensorflow, Kubeflow, and Vertex AI are presented by way of real-world scenarios to help you apply the theory to practical examples and show you how IT professionals design, build, and operate secure ML cloud environments. The book also shows you how to: Frame ML problems and architect ML solutions from scratch Banish test anxiety by verifying and checking your progress with built-in self-assessments and other practical tools Use the Sybex online practice environment, complete with practice questions and explanations, a glossary, objective maps, and flash cards A can’t-miss resource for everyone preparing for the Google Cloud Certified Professional Machine Learning certification exam, or for a new career in ML powered by the Google Cloud Platform, this Sybex Study Guide has everything you need to take the next step in your career.



Machine Learning For Beginners 2025 Step By Step Guide To Master Ml Algorithms Real World Applications


Machine Learning For Beginners 2025 Step By Step Guide To Master Ml Algorithms Real World Applications
DOWNLOAD
Author : J. Paaul
language : en
Publisher: Code Academy
Release Date : 2025-05-07

Machine Learning For Beginners 2025 Step By Step Guide To Master Ml Algorithms Real World Applications written by J. Paaul and has been published by Code Academy this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-07 with Computers categories.


Machine Learning for Beginners 2025 is the perfect guide for anyone looking to dive into the world of machine learning. This book breaks down complex concepts into easy-to-understand explanations and hands-on examples. Covering the fundamentals of ML algorithms, data preprocessing, model evaluation, and real-world applications, this book is ideal for newcomers to the field. With practical projects and step-by-step tutorials, readers will gain the skills to implement machine learning models using Python and popular libraries like Scikit-learn and TensorFlow, making this a comprehensive resource for aspiring data scientists.



Scala Guide For Data Science Professionals


Scala Guide For Data Science Professionals
DOWNLOAD
Author : Pascal Bugnion
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-02-24

Scala Guide For Data Science Professionals written by Pascal Bugnion and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-24 with Computers categories.


Scala will be a valuable tool to have on hand during your data science journey for everything from data cleaning to cutting-edge machine learning About This Book Build data science and data engineering solutions with ease An in-depth look at each stage of the data analysis process — from reading and collecting data to distributed analytics Explore a broad variety of data processing, machine learning, and genetic algorithms through diagrams, mathematical formulations, and source code Who This Book Is For This learning path is perfect for those who are comfortable with Scala programming and now want to enter the field of data science. Some knowledge of statistics is expected. What You Will Learn Transfer and filter tabular data to extract features for machine learning Read, clean, transform, and write data to both SQL and NoSQL databases Create Scala web applications that couple with JavaScript libraries such as D3 to create compelling interactive visualizations Load data from HDFS and HIVE with ease Run streaming and graph analytics in Spark for exploratory analysis Bundle and scale up Spark jobs by deploying them into a variety of cluster managers Build dynamic workflows for scientific computing Leverage open source libraries to extract patterns from time series Master probabilistic models for sequential data In Detail Scala is especially good for analyzing large sets of data as the scale of the task doesn't have any significant impact on performance. Scala's powerful functional libraries can interact with databases and build scalable frameworks — resulting in the creation of robust data pipelines. The first module introduces you to Scala libraries to ingest, store, manipulate, process, and visualize data. Using real world examples, you will learn how to design scalable architecture to process and model data — starting from simple concurrency constructs and progressing to actor systems and Apache Spark. After this, you will also learn how to build interactive visualizations with web frameworks. Once you have become familiar with all the tasks involved in data science, you will explore data analytics with Scala in the second module. You'll see how Scala can be used to make sense of data through easy to follow recipes. You will learn about Bokeh bindings for exploratory data analysis and quintessential machine learning with algorithms with Spark ML library. You'll get a sufficient understanding of Spark streaming, machine learning for streaming data, and Spark graphX. Armed with a firm understanding of data analysis, you will be ready to explore the most cutting-edge aspect of data science — machine learning. The final module teaches you the A to Z of machine learning with Scala. You'll explore Scala for dependency injections and implicits, which are used to write machine learning algorithms. You'll also explore machine learning topics such as clustering, dimentionality reduction, Naive Bayes, Regression models, SVMs, neural networks, and more. This learning path combines some of the best that Packt has to offer into one complete, curated package. It includes content from the following Packt products: Scala for Data Science, Pascal Bugnion Scala Data Analysis Cookbook, Arun Manivannan Scala for Machine Learning, Patrick R. Nicolas Style and approach A complete package with all the information necessary to start building useful data engineering and data science solutions straight away. It contains a diverse set of recipes that cover the full spectrum of interesting data analysis tasks and will help you revolutionize your data analysis skills using Scala.



Artificial Neural Networks And Machine Learning Icann 2021


Artificial Neural Networks And Machine Learning Icann 2021
DOWNLOAD
Author : Igor Farkaš
language : en
Publisher: Springer Nature
Release Date : 2021-09-10

Artificial Neural Networks And Machine Learning Icann 2021 written by Igor Farkaš and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-10 with Computers categories.


The proceedings set LNCS 12891, LNCS 12892, LNCS 12893, LNCS 12894 and LNCS 12895 constitute the proceedings of the 30th International Conference on Artificial Neural Networks, ICANN 2021, held in Bratislava, Slovakia, in September 2021.* The total of 265 full papers presented in these proceedings was carefully reviewed and selected from 496 submissions, and organized in 5 volumes. In this volume, the papers focus on topics such as computer vision and object detection, convolutional neural networks and kernel methods, deep learning and optimization, distributed and continual learning, explainable methods, few-shot learning and generative adversarial networks. *The conference was held online 2021 due to the COVID-19 pandemic.



Learning Professional Python


Learning Professional Python
DOWNLOAD
Author : Usharani Bhimavarapu
language : en
Publisher: CRC Press
Release Date : 2023-10-16

Learning Professional Python written by Usharani Bhimavarapu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-16 with Computers categories.


Volume 1 of Learning Professional Python is a resource for students who want to learn Python even if they don’t have any programming knowledge and for teachers who want a comprehensive introduction to Python to use with their students. This book helps the students achieve their dream job in IT Industry and teaches the students in an easy, understandable manner while strengthening coding skills. Learning Professional Python: Volume 1 Objectives Become familiar with the features of Python programming language Introduce the object-oriented programming concepts Discover how to write Python code by following the object-oriented programming concepts Become comfortable with concepts such as classes, objects, inheritance, dynamic dispatch, interfaces, and packages Learn the Python generics and collections Develop exception handling and the multithreaded applications Design graphical user interface (GUI) applications



Ai Foundations Of Machine Learning


Ai Foundations Of Machine Learning
DOWNLOAD
Author : Jon Adams
language : en
Publisher: Green Mountain Computing
Release Date :

Ai Foundations Of Machine Learning written by Jon Adams and has been published by Green Mountain Computing this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


AI Foundations of Machine Learning Embark on a clarifying expedition through the vibrant world of AI with "AI Foundations of Machine Learning." This comprehensive guide is meticulously crafted for those eager to unravel the complex mechanisms driving artificial intelligence and for pioneers looking to grasp the foundational stones of future technological advancements. From the fundamentals to the futuristic prospects, this book serves as both an educational journey and an initiation into the realm where data, computation, and potential converge. Contents: Understanding Supervised Learning: Begin your journey with an exploration of supervised learning, where machines learn from data with known outcomes, setting the stage for further complexities. The Mechanics of Unsupervised Learning: Delve into the artistry of AI as it uncovers hidden patterns without explicit instructions, highlighting the autonomy of machine learning. Diving into Neural Networks: Uncover the intricacies of neural networks, AI's approximation of the human brain, capable of recognizing speech, images, and nuances in vast datasets. The Decision Tree Paradigm: Discover the decision-making processes of AI through the decision tree paradigm, where data is systematically divided and conquered. Ensemble Methods Combining Strengths: Learn about the power of ensemble methods, which combine multiple models to enhance predictive accuracy and overcome individual weaknesses. Evaluating Model Performance: Understand the critical aspect of evaluating AI model performance, ensuring the integrity and applicability of machine learning applications. Machine Learning in the Real World: Witness the transformative impact of machine learning across various industries, from healthcare to finance, and how it reshapes our interaction with technology. The Future of Machine Learning: Gaze into the future, anticipating the breakthroughs and challenges of machine learning as it becomes an omnipresent force in our lives. This book is your gateway to understanding and participating in the future of AI, equipped with the knowledge to navigate and contribute to the advancements that lie ahead. Whether you are a student, professional, or enthusiast, "AI Foundations of Machine Learning" offers valuable insights into the ever-evolving field of machine learning, encouraging readers to not only understand but also to innovate in the unfolding story of AI.



Artificial Intelligence And Machine Learning For Industry 4 0


Artificial Intelligence And Machine Learning For Industry 4 0
DOWNLOAD
Author : M. Thirunavukkarasan
language : en
Publisher: John Wiley & Sons
Release Date : 2025-06-10

Artificial Intelligence And Machine Learning For Industry 4 0 written by M. Thirunavukkarasan and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-06-10 with Computers categories.


This book is essential for any leader seeking to understand how to leverage intelligent automation and predictive maintenance to drive innovation, enhance productivity, and minimize downtime in their manufacturing processes. Intelligent automation is widely considered to have the greatest potential for Industry 4.0 innovations for corporations. Industrial machinery is increasingly being upgraded to intelligent machines that can perceive, act, evolve, and interact in an industrial environment. The innovative technologies featured in this machinery include the Internet of Things, cyber-physical systems, and artificial intelligence. Artificial intelligence enables computer systems to learn from experience, adapt to new input data, and perform intelligent tasks. The significance of AI is not found in its computational models, but in how humans can use them. Consistently observing equipment to keep it from malfunctioning is the procedure of predictive maintenance. Predictive maintenance includes a periodic maintenance schedule and anticipates equipment failure rather than responding to equipment problems. Currently, the industry is struggling to adopt a viable and trustworthy predictive maintenance plan for machinery. The goal of predictive maintenance is to reduce the amount of unanticipated downtime that a machine experiences due to a failure in a highly automated manufacturing line. In recent years, manufacturing across the globe has increasingly embraced the Industry 4.0 concept. Greater solutions than those offered by conventional maintenance are promised by machine learning, revealing precisely how AI and machine learning-based models are growing more prevalent in numerous industries for intelligent performance and greater productivity. This book emphasizes technological developments that could have great influence on an industrial revolution and introduces the fundamental technologies responsible for directing the development of innovative firms. Decision-making requires a vast intake of data and customization in the manufacturing process, which managers and machines both deal with on a regular basis. One of the biggest issues in this field is the capacity to foresee when maintenance of assets is necessary. Leaders in the sector will have to make careful decisions about how, when, and where to employ these technologies. Artificial Intelligence and Machine Learning for Industry 4.0offers contemporary technological advancements in AI and machine learning from an Industry 4.0 perspective, looking at their prospects, obstacles, and potential applications.