[PDF] Introduction To Multiple Time Series Analysis - eBooks Review

Introduction To Multiple Time Series Analysis


Introduction To Multiple Time Series Analysis
DOWNLOAD

Download Introduction To Multiple Time Series Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Multiple Time Series Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



New Introduction To Multiple Time Series Analysis


New Introduction To Multiple Time Series Analysis
DOWNLOAD
Author : Helmut Lütkepohl
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-12-06

New Introduction To Multiple Time Series Analysis written by Helmut Lütkepohl and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-12-06 with Business & Economics categories.


This reference work and graduate level textbook considers a wide range of models and methods for analyzing and forecasting multiple time series. The models covered include vector autoregressive, cointegrated,vector autoregressive moving average, multivariate ARCH and periodic processes as well as dynamic simultaneous equations and state space models. Least squares, maximum likelihood and Bayesian methods are considered for estimating these models. Different procedures for model selection and model specification are treated and a wide range of tests and criteria for model checking are introduced. Causality analysis, impulse response analysis and innovation accounting are presented as tools for structural analysis. The book is accessible to graduate students in business and economics. In addition, multiple time series courses in other fields such as statistics and engineering may be based on it. Applied researchers involved in analyzing multiple time series may benefit from the book as it provides the background and tools for their tasks. It bridges the gap to the difficult technical literature on the topic.



Introduction To Multiple Time Series Analysis


Introduction To Multiple Time Series Analysis
DOWNLOAD
Author : Helmut Lütkepohl
language : en
Publisher: Springer Science & Business Media
Release Date : 1993-08-13

Introduction To Multiple Time Series Analysis written by Helmut Lütkepohl and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993-08-13 with Business & Economics categories.


This graduate level textbook deals with analyzing and forecasting multiple time series. It considers a wide range of multiple time series models and methods. The models include vector autoregressive, vector autoregressive moving average, cointegrated, and periodic processes as well as state space and dynamic simultaneous equations models. Least squares, maximum likelihood, and Bayesian methods are considered for estimating these models. Different procedures for model selection or specification are treated and a range of tests and criteria for evaluating the adequacy of a chosen model are introduced. The choice of point and interval forecasts is considered and impulse response analysis, dynamic multipliers as well as innovation accounting are presented as tools for structural analysis within the multiple time series context. This book is accessible to graduate students in business and economics. In addition, multiple time series courses in other fields such as statistics and engineering may be based on this book. Applied researchers involved in analyzing multiple time series may benefit from the book as it provides the background and tools for their task. It enables the reader to perform his or her analyses in a gap to the difficult technical literature on the topic.



New Introduction To Multiple Time Series Analysis


New Introduction To Multiple Time Series Analysis
DOWNLOAD
Author : Helmut Lütkepohl
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-07-26

New Introduction To Multiple Time Series Analysis written by Helmut Lütkepohl and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-07-26 with Business & Economics categories.


This is the new and totally revised edition of Lütkepohl’s classic 1991 work. It provides a detailed introduction to the main steps of analyzing multiple time series, model specification, estimation, model checking, and for using the models for economic analysis and forecasting. The book now includes new chapters on cointegration analysis, structural vector autoregressions, cointegrated VARMA processes and multivariate ARCH models. The book bridges the gap to the difficult technical literature on the topic. It is accessible to graduate students in business and economics. In addition, multiple time series courses in other fields such as statistics and engineering may be based on it.



Introduction To Modern Time Series Analysis


Introduction To Modern Time Series Analysis
DOWNLOAD
Author : Gebhard Kirchgässner
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-08-27

Introduction To Modern Time Series Analysis written by Gebhard Kirchgässner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-08-27 with Business & Economics categories.


This book presents modern developments in time series econometrics that are applied to macroeconomic and financial time series. It contains the most important approaches to analyze time series which may be stationary or nonstationary.



Introduction To Multiple Time Series Analysis


Introduction To Multiple Time Series Analysis
DOWNLOAD
Author : Helmut Lütkepohl
language : en
Publisher: Springer
Release Date : 1993

Introduction To Multiple Time Series Analysis written by Helmut Lütkepohl and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993 with Business & Economics categories.


This graduate level textbook deals with analyzing and forecasting multiple time series. It considers a wide range of multiple time series models and methods. The models include vector autoregressive, vector autoregressive moving average, cointegrated, and periodic processes as well as state space and dynamic simultaneous equations models. Least squares, maximum likelihood, and Bayesian methods are considered for estimating these models. Different procedures for model selection or specification are treated and a range of tests and criteria for evaluating the adequacy of a chosen model are introduced. The choice of point and interval forecasts is considered and impulse response analysis, dynamic multipliers as well as innovation accounting are presented as tools for structural analysis within the multiple time series context. This book is accessible to graduate students in business and economics. In addition, multiple time series courses in other fields such as statistics and engineering may be based on this book. Applied researchers involved in analyzing multiple time series may benefit from the book as it provides the background and tools for their task. It enables the reader to perform his or her analyses in a gap to the difficult technical literature on the topic.



Multivariate Time Series Analysis And Applications


Multivariate Time Series Analysis And Applications
DOWNLOAD
Author : William W. S. Wei
language : en
Publisher: John Wiley & Sons
Release Date : 2019-03-18

Multivariate Time Series Analysis And Applications written by William W. S. Wei and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-18 with Mathematics categories.


An essential guide on high dimensional multivariate time series including all the latest topics from one of the leading experts in the field Following the highly successful and much lauded book, Time Series Analysis—Univariate and Multivariate Methods, this new work by William W.S. Wei focuses on high dimensional multivariate time series, and is illustrated with numerous high dimensional empirical time series. Beginning with the fundamentalconcepts and issues of multivariate time series analysis,this book covers many topics that are not found in general multivariate time series books. Some of these are repeated measurements, space-time series modelling, and dimension reduction. The book also looks at vector time series models, multivariate time series regression models, and principle component analysis of multivariate time series. Additionally, it provides readers with information on factor analysis of multivariate time series, multivariate GARCH models, and multivariate spectral analysis of time series. With the development of computers and the internet, we have increased potential for data exploration. In the next few years, dimension will become a more serious problem. Multivariate Time Series Analysis and its Applications provides some initial solutions, which may encourage the development of related software needed for the high dimensional multivariate time series analysis. Written by bestselling author and leading expert in the field Covers topics not yet explored in current multivariate books Features classroom tested material Written specifically for time series courses Multivariate Time Series Analysis and its Applications is designed for an advanced time series analysis course. It is a must-have for anyone studying time series analysis and is also relevant for students in economics, biostatistics, and engineering.



State Space Methods For Time Series Analysis


State Space Methods For Time Series Analysis
DOWNLOAD
Author : Jose Casals
language : en
Publisher: CRC Press
Release Date : 2018-09-03

State Space Methods For Time Series Analysis written by Jose Casals and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-03 with Mathematics categories.


The state-space approach provides a formal framework where any result or procedure developed for a basic model can be seamlessly applied to a standard formulation written in state-space form. Moreover, it can accommodate with a reasonable effort nonstandard situations, such as observation errors, aggregation constraints, or missing in-sample values. Exploring the advantages of this approach, State-Space Methods for Time Series Analysis: Theory, Applications and Software presents many computational procedures that can be applied to a previously specified linear model in state-space form. After discussing the formulation of the state-space model, the book illustrates the flexibility of the state-space representation and covers the main state estimation algorithms: filtering and smoothing. It then shows how to compute the Gaussian likelihood for unknown coefficients in the state-space matrices of a given model before introducing subspace methods and their application. It also discusses signal extraction, describes two algorithms to obtain the VARMAX matrices corresponding to any linear state-space model, and addresses several issues relating to the aggregation and disaggregation of time series. The book concludes with a cross-sectional extension to the classical state-space formulation in order to accommodate longitudinal or panel data. Missing data is a common occurrence here, and the book explains imputation procedures necessary to treat missingness in both exogenous and endogenous variables. Web Resource The authors’ E4 MATLAB® toolbox offers all the computational procedures, administrative and analytical functions, and related materials for time series analysis. This flexible, powerful, and free software tool enables readers to replicate the practical examples in the text and apply the procedures to their own work.



Introduction To Time Series Analysis


Introduction To Time Series Analysis
DOWNLOAD
Author : Vikas Rathi
language : en
Publisher: Educohack Press
Release Date : 2025-02-20

Introduction To Time Series Analysis written by Vikas Rathi and has been published by Educohack Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-20 with Science categories.


"Introduction to Time Series Analysis" is a comprehensive guide exploring the world of time series data, blending theoretical insights with practical applications. Time series analysis is crucial across disciplines like economics, finance, engineering, and environmental science, helping us understand past patterns, forecast future trends, and make informed decisions. We cater to students, researchers, and practitioners seeking a deep understanding of time series analysis. Covering a range of topics from foundational concepts to advanced techniques, we ensure readers gain a holistic view of the subject. With clear explanations, illustrative examples, and real-world case studies, this book equips readers with the knowledge and skills needed to tackle complex time series data effectively. The book provides a solid theoretical foundation in time series analysis, covering topics such as time series decomposition, forecasting methods, and advanced modeling techniques. Emphasis is placed on practical applications, with real-world examples and case studies illustrating concepts and methodologies. The text is written in clear and accessible language, suitable for readers with varying expertise, and acknowledges the interdisciplinary nature of time series analysis, exploring its applications across different fields. Whether you're a student, researcher, or practitioner, "Introduction to Time Series Analysis" offers valuable insights and practical guidance to harness the power of time series data for informed decision-making.



Time Series Analysis


Time Series Analysis
DOWNLOAD
Author : Katsuto Tanaka
language : en
Publisher: John Wiley & Sons
Release Date : 2017-03-28

Time Series Analysis written by Katsuto Tanaka and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-28 with Mathematics categories.


Reflects the developments and new directions in the field since the publication of the first successful edition and contains a complete set of problems and solutions This revised and expanded edition reflects the developments and new directions in the field since the publication of the first edition. In particular, sections on nonstationary panel data analysis and a discussion on the distinction between deterministic and stochastic trends have been added. Three new chapters on long-memory discrete-time and continuous-time processes have also been created, whereas some chapters have been merged and some sections deleted. The first eleven chapters of the first edition have been compressed into ten chapters, with a chapter on nonstationary panel added and located under Part I: Analysis of Non-fractional Time Series. Chapters 12 to 14 have been newly written under Part II: Analysis of Fractional Time Series. Chapter 12 discusses the basic theory of long-memory processes by introducing ARFIMA models and the fractional Brownian motion (fBm). Chapter 13 is concerned with the computation of distributions of quadratic functionals of the fBm and its ratio. Next, Chapter 14 introduces the fractional Ornstein–Uhlenbeck process, on which the statistical inference is discussed. Finally, Chapter 15 gives a complete set of solutions to problems posed at the end of most sections. This new edition features: • Sections to discuss nonstationary panel data analysis, the problem of differentiating between deterministic and stochastic trends, and nonstationary processes of local deviations from a unit root • Consideration of the maximum likelihood estimator of the drift parameter, as well as asymptotics as the sampling span increases • Discussions on not only nonstationary but also noninvertible time series from a theoretical viewpoint • New topics such as the computation of limiting local powers of panel unit root tests, the derivation of the fractional unit root distribution, and unit root tests under the fBm error Time Series Analysis: Nonstationary and Noninvertible Distribution Theory, Second Edition, is a reference for graduate students in econometrics or time series analysis. Katsuto Tanaka, PhD, is a professor in the Faculty of Economics at Gakushuin University and was previously a professor at Hitotsubashi University. He is a recipient of the Tjalling C. Koopmans Econometric Theory Prize (1996), the Japan Statistical Society Prize (1998), and the Econometric Theory Award (1999). Aside from the first edition of Time Series Analysis (Wiley, 1996), Dr. Tanaka had published five econometrics and statistics books in Japanese.



Multivariate Time Series Analysis


Multivariate Time Series Analysis
DOWNLOAD
Author : Ruey S. Tsay
language : en
Publisher: John Wiley & Sons
Release Date : 2013-11-11

Multivariate Time Series Analysis written by Ruey S. Tsay and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.


An accessible guide to the multivariate time series tools used in numerous real-world applications Multivariate Time Series Analysis: With R and Financial Applications is the much anticipated sequel coming from one of the most influential and prominent experts on the topic of time series. Through a fundamental balance of theory and methodology, the book supplies readers with a comprehensible approach to financial econometric models and their applications to real-world empirical research. Differing from the traditional approach to multivariate time series, the book focuses on reader comprehension by emphasizing structural specification, which results in simplified parsimonious VAR MA modeling. Multivariate Time Series Analysis: With R and Financial Applications utilizes the freely available R software package to explore complex data and illustrate related computation and analyses. Featuring the techniques and methodology of multivariate linear time series, stationary VAR models, VAR MA time series and models, unitroot process, factor models, and factor-augmented VAR models, the book includes: • Over 300 examples and exercises to reinforce the presented content • User-friendly R subroutines and research presented throughout to demonstrate modern applications • Numerous datasets and subroutines to provide readers with a deeper understanding of the material Multivariate Time Series Analysis is an ideal textbook for graduate-level courses on time series and quantitative finance and upper-undergraduate level statistics courses in time series. The book is also an indispensable reference for researchers and practitioners in business, finance, and econometrics.