[PDF] Introduction To Robust Estimation And Hypothesis Testing - eBooks Review

Introduction To Robust Estimation And Hypothesis Testing


Introduction To Robust Estimation And Hypothesis Testing
DOWNLOAD

Download Introduction To Robust Estimation And Hypothesis Testing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Robust Estimation And Hypothesis Testing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Introduction To Robust Estimation And Hypothesis Testing


Introduction To Robust Estimation And Hypothesis Testing
DOWNLOAD
Author : Rand R. Wilcox
language : en
Publisher: Academic Press
Release Date : 2011-12-14

Introduction To Robust Estimation And Hypothesis Testing written by Rand R. Wilcox and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-12-14 with Mathematics categories.


This revised book provides a thorough explanation of the foundation of robust methods, incorporating the latest updates on R and S-Plus, robust ANOVA (Analysis of Variance) and regression. It guides advanced students and other professionals through the basic strategies used for developing practical solutions to problems, and provides a brief background on the foundations of modern methods, placing the new methods in historical context. Author Rand Wilcox includes chapter exercises and many real-world examples that illustrate how various methods perform in different situations. Introduction to Robust Estimation and Hypothesis Testing, Second Edition, focuses on the practical applications of modern, robust methods which can greatly enhance our chances of detecting true differences among groups and true associations among variables. - Covers latest developments in robust regression - Covers latest improvements in ANOVA - Includes newest rank-based methods - Describes and illustrated easy to use software



Introduction To Robust Estimation And Hypothesis Testing


Introduction To Robust Estimation And Hypothesis Testing
DOWNLOAD
Author : Rand R. Wilcox
language : en
Publisher: Academic Press
Release Date : 2005-01-05

Introduction To Robust Estimation And Hypothesis Testing written by Rand R. Wilcox and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-01-05 with Mathematics categories.


This revised book provides a thorough explanation of the foundation of robust methods, incorporating the latest updates on R and S-Plus, robust ANOVA (Analysis of Variance) and regression. It guides advanced students and other professionals through the basic strategies used for developing practical solutions to problems, and provides a brief background on the foundations of modern methods, placing the new methods in historical context. Author Rand Wilcox includes chapter exercises and many real-world examples that illustrate how various methods perform in different situations. Introduction to Robust Estimation and Hypothesis Testing, Second Edition, focuses on the practical applications of modern, robust methods which can greatly enhance our chances of detecting true differences among groups and true associations among variables. * Covers latest developments in robust regression * Covers latest improvements in ANOVA * Includes newest rank-based methods * Describes and illustrated easy to use software



Introduction To Robust Estimation And Hypothesis Testing


Introduction To Robust Estimation And Hypothesis Testing
DOWNLOAD
Author : Rand R. Wilcox
language : en
Publisher: Elsevier
Release Date : 2005-01-22

Introduction To Robust Estimation And Hypothesis Testing written by Rand R. Wilcox and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-01-22 with Mathematics categories.


This revised book provides a thorough explanation of the foundation of robust methods, incorporating the latest updates on R and S-Plus, robust ANOVA (Analysis of Variance) and regression. It guides advanced students and other professionals through the basic strategies used for developing practical solutions to problems, and provides a brief background on the foundations of modern methods, placing the new methods in historical context. Author Rand Wilcox includes chapter exercises and many real-world examples that illustrate how various methods perform in different situations.Introduction to Robust Estimation and Hypothesis Testing, Second Edition, focuses on the practical applications of modern, robust methods which can greatly enhance our chances of detecting true differences among groups and true associations among variables.* Covers latest developments in robust regression* Covers latest improvements in ANOVA* Includes newest rank-based methods* Describes and illustrated easy to use software



Parameter Estimation And Hypothesis Testing In Linear Models


Parameter Estimation And Hypothesis Testing In Linear Models
DOWNLOAD
Author : Karl-Rudolf Koch
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Parameter Estimation And Hypothesis Testing In Linear Models written by Karl-Rudolf Koch and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.


The necessity to publish the second edition of this book arose when its third German edition had just been published. This second English edition is there fore a translation of the third German edition of Parameter Estimation and Hypothesis Testing in Linear Models, published in 1997. It differs from the first English edition by the addition of a new chapter on robust estimation of parameters and the deletion of the section on discriminant analysis, which has been more completely dealt with by the author in the book Bayesian In ference with Geodetic Applications, Springer-Verlag, Berlin Heidelberg New York, 1990. Smaller additions and deletions have been incorporated, to im prove the text, to point out new developments or to eliminate errors which became apparent. A few examples have been also added. I thank Springer-Verlag for publishing this second edition and for the assistance in checking the translation, although the responsibility of errors remains with the author. I also want to express my thanks to Mrs. Ingrid Wahl and to Mrs. Heidemarlen Westhiiuser who prepared the second edition. Bonn, January 1999 Karl-Rudolf Koch Preface to the First Edition This book is a translation with slight modifications and additions of the second German edition of Parameter Estimation and Hypothesis Testing in Linear Models, published in 1987.



Fundamentals Of Modern Statistical Methods


Fundamentals Of Modern Statistical Methods
DOWNLOAD
Author : Rand R. Wilcox
language : en
Publisher: Springer
Release Date : 2010-03-10

Fundamentals Of Modern Statistical Methods written by Rand R. Wilcox and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-03-10 with Social Science categories.


Conventional statistical methods have a very serious flaw. They routinely miss differences among groups or associations among variables that are detected by more modern techniques, even under very small departures from normality. Hundreds of journal articles have described the reasons standard techniques can be unsatisfactory, but simple, intuitive explanations are generally unavailable. Situations arise where even highly nonsignificant results become significant when analyzed with more modern methods. Without assuming the reader has any prior training in statistics, Part I of this book describes basic statistical principles from a point of view that makes their shortcomings intuitive and easy to understand. The emphasis is on verbal and graphical descriptions of concepts. Part II describes modern methods that address the problems covered in Part I. Using data from actual studies, many examples are included to illustrate the practical problems with conventional procedures and how more modern methods can make a substantial difference in the conclusions reached in many areas of statistical research. The second edition of this book includes a number of advances and insights that have occurred since the first edition appeared. Included are new results relevant to medians, regression, measures of association, strategies for comparing dependent groups, methods for dealing with heteroscedasticity, and measures of effect size.



Robustness Tests For Quantitative Research


Robustness Tests For Quantitative Research
DOWNLOAD
Author : Eric Neumayer
language : en
Publisher: Cambridge University Press
Release Date : 2017-08-17

Robustness Tests For Quantitative Research written by Eric Neumayer and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-17 with Business & Economics categories.


This highly accessible book presents robustness testing as the methodology for conducting quantitative analyses in the presence of model uncertainty.



Applying Contemporary Statistical Techniques


Applying Contemporary Statistical Techniques
DOWNLOAD
Author : Rand R. Wilcox
language : en
Publisher: Elsevier
Release Date : 2003-01-16

Applying Contemporary Statistical Techniques written by Rand R. Wilcox and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-01-16 with Mathematics categories.


Applying Contemporary Statistical Techniques explains why traditional statistical methods are often inadequate or outdated when applied to modern problems. Wilcox demonstrates how new and more powerful techniques address these problems far more effectively, making these modern robust methods understandable, practical, and easily accessible.* Assumes no previous training in statistics * Explains how and why modern statistical methods provide more accurate results than conventional methods* Covers the latest developments on multiple comparisons * Includes recent advances in risk-based methods * Features many illustrations and examples using data from real studies * Describes and illustrates easy-to-use s-plus functions for applying cutting-edge techniques * Covers many contemporary ANOVA (analysis of variance) and regression methods not found in other books



Understanding And Applying Basic Statistical Methods Using R


Understanding And Applying Basic Statistical Methods Using R
DOWNLOAD
Author : Rand R. Wilcox
language : en
Publisher: John Wiley & Sons
Release Date : 2016-05-16

Understanding And Applying Basic Statistical Methods Using R written by Rand R. Wilcox and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-16 with Social Science categories.


Features a straightforward and concise resource for introductory statistical concepts, methods, and techniques using R Understanding and Applying Basic Statistical Methods Using R uniquely bridges the gap between advances in the statistical literature and methods routinely used by non-statisticians. Providing a conceptual basis for understanding the relative merits and applications of these methods, the book features modern insights and advances relevant to basic techniques in terms of dealing with non-normality, outliers, heteroscedasticity (unequal variances), and curvature. Featuring a guide to R, the book uses R programming to explore introductory statistical concepts and standard methods for dealing with known problems associated with classic techniques. Thoroughly class-room tested, the book includes sections that focus on either R programming or computational details to help the reader become acquainted with basic concepts and principles essential in terms of understanding and applying the many methods currently available. Covering relevant material from a wide range of disciplines, Understanding and Applying Basic Statistical Methods Using R also includes: Numerous illustrations and exercises that use data to demonstrate the practical importance of multiple perspectives Discussions on common mistakes such as eliminating outliers and applying standard methods based on means using the remaining data Detailed coverage on R programming with descriptions on how to apply both classic and more modern methods using R A companion website with the data and solutions to all of the exercises Understanding and Applying Basic Statistical Methods Using R is an ideal textbook for an undergraduate and graduate-level statistics courses in the science and/or social science departments. The book can also serve as a reference for professional statisticians and other practitioners looking to better understand modern statistical methods as well as R programming. Rand R. Wilcox, PhD, is Professor in the Department of Psychology at the University of Southern California, Fellow of the Association for Psychological Science, and an associate editor for four statistics journals. He is also a member of the International Statistical Institute. The author of more than 320 articles published in a variety of statistical journals, he is also the author eleven other books on statistics. Dr. Wilcox is creator of WRS (Wilcox’ Robust Statistics), which is an R package for performing robust statistical methods. His main research interest includes statistical methods, particularly robust methods for comparing groups and studying associations.



Theoretical Statistics


Theoretical Statistics
DOWNLOAD
Author : Robert W. Keener
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-09-08

Theoretical Statistics written by Robert W. Keener and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-09-08 with Mathematics categories.


Intended as the text for a sequence of advanced courses, this book covers major topics in theoretical statistics in a concise and rigorous fashion. The discussion assumes a background in advanced calculus, linear algebra, probability, and some analysis and topology. Measure theory is used, but the notation and basic results needed are presented in an initial chapter on probability, so prior knowledge of these topics is not essential. The presentation is designed to expose students to as many of the central ideas and topics in the discipline as possible, balancing various approaches to inference as well as exact, numerical, and large sample methods. Moving beyond more standard material, the book includes chapters introducing bootstrap methods, nonparametric regression, equivariant estimation, empirical Bayes, and sequential design and analysis. The book has a rich collection of exercises. Several of them illustrate how the theory developed in the book may be used in various applications. Solutions to many of the exercises are included in an appendix.



Robust Correlation


Robust Correlation
DOWNLOAD
Author : Georgy L. Shevlyakov
language : en
Publisher: John Wiley & Sons
Release Date : 2016-09-08

Robust Correlation written by Georgy L. Shevlyakov and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-08 with Mathematics categories.


This bookpresents material on both the analysis of the classical concepts of correlation and on the development of their robust versions, as well as discussing the related concepts of correlation matrices, partial correlation, canonical correlation, rank correlations, with the corresponding robust and non-robust estimation procedures. Every chapter contains a set of examples with simulated and real-life data. Key features: Makes modern and robust correlation methods readily available and understandable to practitioners, specialists, and consultants working in various fields. Focuses on implementation of methodology and application of robust correlation with R. Introduces the main approaches in robust statistics, such as Huber’s minimax approach and Hampel’s approach based on influence functions. Explores various robust estimates of the correlation coefficient including the minimax variance and bias estimates as well as the most B- and V-robust estimates. Contains applications of robust correlation methods to exploratory data analysis, multivariate statistics, statistics of time series, and to real-life data. Includes an accompanying website featuring computer code and datasets Features exercises and examples throughout the text using both small and large data sets. Theoretical and applied statisticians, specialists in multivariate statistics, robust statistics, robust time series analysis, data analysis and signal processing will benefit from this book. Practitioners who use correlation based methods in their work as well as postgraduate students in statistics will also find this book useful.