[PDF] Introduction To The Theory Of Functional Differential Equations Methods And Applications - eBooks Review

Introduction To The Theory Of Functional Differential Equations Methods And Applications


Introduction To The Theory Of Functional Differential Equations Methods And Applications
DOWNLOAD

Download Introduction To The Theory Of Functional Differential Equations Methods And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To The Theory Of Functional Differential Equations Methods And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Introduction To The Theory Of Functional Differential Equations Methods And Applications


Introduction To The Theory Of Functional Differential Equations Methods And Applications
DOWNLOAD
Author : Nikolaj Viktorovič Azbelev
language : en
Publisher: Hindawi Publishing Corporation
Release Date : 2007

Introduction To The Theory Of Functional Differential Equations Methods And Applications written by Nikolaj Viktorovič Azbelev and has been published by Hindawi Publishing Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Electronic books categories.




Applied Theory Of Functional Differential Equations


Applied Theory Of Functional Differential Equations
DOWNLOAD
Author : V. Kolmanovskii
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Applied Theory Of Functional Differential Equations written by V. Kolmanovskii and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


This volume provides an introduction to the properties of functional differential equations and their applications in diverse fields such as immunology, nuclear power generation, heat transfer, signal processing, medicine and economics. In particular, it deals with problems and methods relating to systems having a memory (hereditary systems). The book contains eight chapters. Chapter 1 explains where functional differential equations come from and what sort of problems arise in applications. Chapter 2 gives a broad introduction to the basic principle involved and deals with systems having discrete and distributed delay. Chapters 3-5 are devoted to stability problems for retarded, neutral and stochastic functional differential equations. Problems of optimal control and estimation are considered in Chapters 6-8. For applied mathematicians, engineers, and physicists whose work involves mathematical modeling of hereditary systems. This volume can also be recommended as a supplementary text for graduate students who wish to become better acquainted with the properties and applications of functional differential equations.



Theory And Applications Of Partial Functional Differential Equations


Theory And Applications Of Partial Functional Differential Equations
DOWNLOAD
Author : Jianhong Wu
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Theory And Applications Of Partial Functional Differential Equations written by Jianhong Wu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Abstract semilinear functional differential equations arise from many biological, chemical, and physical systems which are characterized by both spatial and temporal variables and exhibit various spatio-temporal patterns. The aim of this book is to provide an introduction of the qualitative theory and applications of these equations from the dynamical systems point of view. The required prerequisites for that book are at a level of a graduate student. The style of presentation will be appealing to people trained and interested in qualitative theory of ordinary and functional differential equations.



Nonoscillation Theory Of Functional Differential Equations With Applications


Nonoscillation Theory Of Functional Differential Equations With Applications
DOWNLOAD
Author : Ravi P. Agarwal
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-04-23

Nonoscillation Theory Of Functional Differential Equations With Applications written by Ravi P. Agarwal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-04-23 with Mathematics categories.


This monograph explores nonoscillation and existence of positive solutions for functional differential equations and describes their applications to maximum principles, boundary value problems and stability of these equations. In view of this objective the volume considers a wide class of equations including, scalar equations and systems of different types, equations with variable types of delays and equations with variable deviations of the argument. Each chapter includes an introduction and preliminaries, thus making it complete. Appendices at the end of the book cover reference material. Nonoscillation Theory of Functional Differential Equations with Applications is addressed to a wide audience of researchers in mathematics and practitioners.​



Bifurcation Theory Of Functional Differential Equations


Bifurcation Theory Of Functional Differential Equations
DOWNLOAD
Author : Shangjiang Guo
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-07-30

Bifurcation Theory Of Functional Differential Equations written by Shangjiang Guo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-07-30 with Mathematics categories.


This book provides a crash course on various methods from the bifurcation theory of Functional Differential Equations (FDEs). FDEs arise very naturally in economics, life sciences and engineering and the study of FDEs has been a major source of inspiration for advancement in nonlinear analysis and infinite dimensional dynamical systems. The book summarizes some practical and general approaches and frameworks for the investigation of bifurcation phenomena of FDEs depending on parameters with chap. This well illustrated book aims to be self contained so the readers will find in this book all relevant materials in bifurcation, dynamical systems with symmetry, functional differential equations, normal forms and center manifold reduction. This material was used in graduate courses on functional differential equations at Hunan University (China) and York University (Canada).



Introduction To Functional Differential Equations


Introduction To Functional Differential Equations
DOWNLOAD
Author : Jack K. Hale
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-21

Introduction To Functional Differential Equations written by Jack K. Hale and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-21 with Mathematics categories.


The present book builds upon an earlier work of J. Hale, "Theory of Func tional Differential Equations" published in 1977. We have tried to maintain the spirit of that book and have retained approximately one-third of the material intact. One major change was a complete new presentation of lin ear systems (Chapters 6~9) for retarded and neutral functional differential equations. The theory of dissipative systems (Chapter 4) and global at tractors was completely revamped as well as the invariant manifold theory (Chapter 10) near equilibrium points and periodic orbits. A more complete theory of neutral equations is presented (see Chapters 1, 2, 3, 9, and 10). Chapter 12 is completely new and contains a guide to active topics of re search. In the sections on supplementary remarks, we have included many references to recent literature, but, of course, not nearly all, because the subject is so extensive. Jack K. Hale Sjoerd M. Verduyn Lunel Contents Preface............................................................ v Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . 1. Linear differential difference equations . . . . . . . . . . . . . . 11 . . . . . . 1.1 Differential and difference equations. . . . . . . . . . . . . . . . . . . . 11 . . . . . . . . 1.2 Retarded differential difference equations. . . . . . . . . . . . . . . . 13 . . . . . . . 1.3 Exponential estimates of x( ¢,f) . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . . . 1.4 The characteristic equation . . . . . . . . . . . . . . . . . . . . . . . . 17 . . . . . . . . . . . . 1.5 The fundamental solution. . . . . . . . . . . . . . . . . . . . . . . . . . 18 . . . . . . . . . . . . 1.6 The variation-of-constantsformula............................. 23 1. 7 Neutral differential difference equations . . . . . . . . . . . . . . . . . 25 . . . . . . . 1.8 Supplementary remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . . . . . . . . . . . . 2. Functional differential equations: Basic theory . . . . . . . . 38 . . 2.1 Definition of a retarded equation. . . . . . . . . . . . . . . . . . . . . . 38 . . . . . . . . . 2.2 Existence, uniqueness, and continuous dependence . . . . . . . . . . 39 . . . 2.3 Continuation of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 44 . . . . . . . . . . . .



Delay And Functional Differential Equations And Their Applications


Delay And Functional Differential Equations And Their Applications
DOWNLOAD
Author : Klaus Schmitt
language : en
Publisher: Elsevier
Release Date : 2014-05-10

Delay And Functional Differential Equations And Their Applications written by Klaus Schmitt and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-10 with Mathematics categories.


Delay and Functional Differential Equations and Their Applications provides information pertinent to the fundamental aspects of functional differential equations and its applications. This book covers a variety of topics, including qualitative and geometric theory, control theory, Volterra equations, numerical methods, the theory of epidemics, problems in physiology, and other areas of applications. Organized into two parts encompassing 25 chapters, this book begins with an overview of problems involving functional differential equations with terminal conditions in function spaces. This text then examines the numerical methods for functional differential equations. Other chapters consider the theory of radiative transfer, which give rise to several interesting functional partial differential equations. This book discusses as well the theory of embedding fields, which studies systems of nonlinear functional differential equations that can be derived from psychological postulates and interpreted as neural networks. The final chapter deals with the usefulness of the flip-flop circuit. This book is a valuable resource for mathematicians.



Introduction To The Theory Of Functional Differential Equations


Introduction To The Theory Of Functional Differential Equations
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2007

Introduction To The Theory Of Functional Differential Equations written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Control theory categories.


This book covers many topics in the theory of functional differential equations: key questions of the general theory, boundary value problems (both linear and nonlinear), control problems (with both classic and impulse control), stability problems, calculus of variations problems, computer-assisted techniques for studying the problems mentioned.



Functional Differential Equations


Functional Differential Equations
DOWNLOAD
Author : Constantin Corduneanu
language : en
Publisher: John Wiley & Sons
Release Date : 2016-03-25

Functional Differential Equations written by Constantin Corduneanu and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-25 with Mathematics categories.


Features new results and up-to-date advances in modeling and solving differential equations Introducing the various classes of functional differential equations, Functional Differential Equations: Advances and Applications presents the needed tools and topics to study the various classes of functional differential equations and is primarily concerned with the existence, uniqueness, and estimates of solutions to specific problems. The book focuses on the general theory of functional differential equations, provides the requisite mathematical background, and details the qualitative behavior of solutions to functional differential equations. The book addresses problems of stability, particularly for ordinary differential equations in which the theory can provide models for other classes of functional differential equations, and the stability of solutions is useful for the application of results within various fields of science, engineering, and economics. Functional Differential Equations: Advances and Applications also features: • Discussions on the classes of equations that cannot be solved to the highest order derivative, and in turn, addresses existence results and behavior types • Oscillatory motion and solutions that occur in many real-world phenomena as well as in man-made machines • Numerous examples and applications with a specific focus on ordinary differential equations and functional differential equations with finite delay • An appendix that introduces generalized Fourier series and Fourier analysis after periodicity and almost periodicity • An extensive Bibliography with over 550 references that connects the presented concepts to further topical exploration Functional Differential Equations: Advances and Applications is an ideal reference for academics and practitioners in applied mathematics, engineering, economics, and physics. The book is also an appropriate textbook for graduate- and PhD-level courses in applied mathematics, differential and difference equations, differential analysis, and dynamics processes. CONSTANTIN CORDUNEANU, PhD, is Emeritus Professor in the Department of Mathematics at The University of Texas at Arlington, USA. The author of six books and over 200 journal articles, he is currently Associate Editor for seven journals; a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Romanian Academy; and past president of the American Romanian Academy of Arts and Sciences. YIZENG LI, PhD, is Professor in the Department of Mathematics at Tarrant County College, USA. He is a member of the Society for Industrial and Applied Mathematics. MEHRAN MAHDAVI, PhD, is Professor in the Department of Mathematics at Bowie State University, USA. The author of numerous journal articles, he is a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Mathematical Association of America.



Partial Differential Equations 2


Partial Differential Equations 2
DOWNLOAD
Author : Friedrich Sauvigny
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-10-11

Partial Differential Equations 2 written by Friedrich Sauvigny and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-10-11 with Mathematics categories.


This encyclopedic work covers the whole area of Partial Differential Equations - of the elliptic, parabolic, and hyperbolic type - in two and several variables. Emphasis is placed on the connection of PDEs and complex variable methods. This second volume addresses Solvability of operator equations in Banach spaces; Linear operators in Hilbert spaces and spectral theory; Schauder's theory of linear elliptic differential equations; Weak solutions of differential equations; Nonlinear partial differential equations and characteristics; Nonlinear elliptic systems with differential-geometric applications. While partial differential equations are solved via integral representations in the preceding volume, this volume uses functional analytic solution methods.