[PDF] Introduction To Tropical Geometry - eBooks Review

Introduction To Tropical Geometry


Introduction To Tropical Geometry
DOWNLOAD

Download Introduction To Tropical Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Tropical Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Introduction To Tropical Geometry


Introduction To Tropical Geometry
DOWNLOAD
Author : Diane Maclagan
language : en
Publisher: American Mathematical Society
Release Date : 2021-12-13

Introduction To Tropical Geometry written by Diane Maclagan and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-13 with Mathematics categories.


Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of the six chapters concludes with problems that will help the readers to practice their tropical skills, and to gain access to the research literature. This wonderful book will appeal to students and researchers of all stripes: it begins at an undergraduate level and ends with deep connections to toric varieties, compactifications, and degenerations. In between, the authors provide the first complete proofs in book form of many fundamental results in the subject. The pages are sprinkled with illuminating examples, applications, and exercises, and the writing is lucid and meticulous throughout. It is that rare kind of book which will be used equally as an introductory text by students and as a reference for experts. —Matt Baker, Georgia Institute of Technology Tropical geometry is an exciting new field, which requires tools from various parts of mathematics and has connections with many areas. A short definition is given by Maclagan and Sturmfels: “Tropical geometry is a marriage between algebraic and polyhedral geometry”. This wonderful book is a pleasant and rewarding journey through different landscapes, inviting the readers from a day at a beach to the hills of modern algebraic geometry. The authors present building blocks, examples and exercises as well as recent results in tropical geometry, with ingredients from algebra, combinatorics, symbolic computation, polyhedral geometry and algebraic geometry. The volume will appeal both to beginning graduate students willing to enter the field and to researchers, including experts. —Alicia Dickenstein, University of Buenos Aires, Argentina



Introduction To Tropical Geometry


Introduction To Tropical Geometry
DOWNLOAD
Author : Diane Maclagan
language : en
Publisher: American Mathematical Soc.
Release Date : 2015-04-15

Introduction To Tropical Geometry written by Diane Maclagan and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-04-15 with Mathematics categories.


Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of the six chapters concludes with problems that will help the readers to practice their tropical skills, and to gain access to the research literature.



Introduction To Tropical Geometry


Introduction To Tropical Geometry
DOWNLOAD
Author : Diane Maclagan
language : en
Publisher:
Release Date : 2015

Introduction To Tropical Geometry written by Diane Maclagan and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Geometry, Algebraic categories.


Cover -- Title page -- Coyright page -- Dedication -- Contents -- Preface -- Chapter 1. Tropical islands -- Chapter 2. Building blocks -- Chapter 3. Tropical varieties -- Chapter 4. Tropical rain forest -- Chapter 5. Tropical garden -- Chapter 6. Toric connections -- Bibliography -- Index -- Back Cover



Tropical Geometry And Mirror Symmetry


Tropical Geometry And Mirror Symmetry
DOWNLOAD
Author : Mark Gross
language : en
Publisher: American Mathematical Soc.
Release Date : 2011-01-20

Tropical Geometry And Mirror Symmetry written by Mark Gross and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-01-20 with Mathematics categories.


Tropical geometry provides an explanation for the remarkable power of mirror symmetry to connect complex and symplectic geometry. The main theme of this book is the interplay between tropical geometry and mirror symmetry, culminating in a description of the recent work of Gross and Siebert using log geometry to understand how the tropical world relates the A- and B-models in mirror symmetry. The text starts with a detailed introduction to the notions of tropical curves and manifolds, and then gives a thorough description of both sides of mirror symmetry for projective space, bringing together material which so far can only be found scattered throughout the literature. Next follows an introduction to the log geometry of Fontaine-Illusie and Kato, as needed for Nishinou and Siebert's proof of Mikhalkin's tropical curve counting formulas. This latter proof is given in the fourth chapter. The fifth chapter considers the mirror, B-model side, giving recent results of the author showing how tropical geometry can be used to evaluate the oscillatory integrals appearing. The final chapter surveys reconstruction results of the author and Siebert for ``integral tropical manifolds.'' A complete version of the argument is given in two dimensions.



Nonarchimedean And Tropical Geometry


Nonarchimedean And Tropical Geometry
DOWNLOAD
Author : Matthew Baker
language : en
Publisher: Springer
Release Date : 2016-08-18

Nonarchimedean And Tropical Geometry written by Matthew Baker and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-18 with Mathematics categories.


This volume grew out of two Simons Symposia on "Nonarchimedean and tropical geometry" which took place on the island of St. John in April 2013 and in Puerto Rico in February 2015. Each meeting gathered a small group of experts working near the interface between tropical geometry and nonarchimedean analytic spaces for a series of inspiring and provocative lectures on cutting edge research, interspersed with lively discussions and collaborative work in small groups. The articles collected here, which include high-level surveys as well as original research, mirror the main themes of the two Symposia. Topics covered in this volume include: Differential forms and currents, and solutions of Monge-Ampere type differential equations on Berkovich spaces and their skeletons; The homotopy types of nonarchimedean analytifications; The existence of "faithful tropicalizations" which encode the topology and geometry of analytifications; Relations between nonarchimedean analytic spaces and algebraic geometry, including logarithmic schemes, birational geometry, and the geometry of algebraic curves; Extended notions of tropical varieties which relate to Huber's theory of adic spaces analogously to the way that usual tropical varieties relate to Berkovich spaces; and Relations between nonarchimedean geometry and combinatorics, including deep and fascinating connections between matroid theory, tropical geometry, and Hodge theory.



Computational Algebraic Geometry


Computational Algebraic Geometry
DOWNLOAD
Author : Frederic Eyssette
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Computational Algebraic Geometry written by Frederic Eyssette and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


The theory and practice of computation in algebraic geometry and related domains, from a mathematical point of view, has generated an increasing interest both for its rich theoretical possibilities and its usefulness in applications in science and engineering. In fact, it is one of the master keys for future significant improvement of the computer algebra systems (e.g., Reduce, Macsyma, Maple, Mathematica, Axiom, Macaulay, etc.) that have become such useful tools for many scientists in a variety of disciplines. The major themes covered in this volume, arising from papers p- sented at the conference MEGA-92 were: - Effective methods and complexity issues in commutative algebra, projective geometry, real geometry, and algebraic number theory - Algebra-geometric methods in algebraic computing and applica tions. MEGA-92 was the second of a new series of European conferences on the general theme of Effective Methods in Algebraic Geometry. It was held in Nice, France, on April 21-25, 1992 and built on the themes presented at MEGA-90 (Livomo, Italy, April 17-21, 1990). The next conference - MEGA-94 - will be held in Santander, Spain in the spring of 1994. The Organizing committee that initiatiod and supervises this bi enniel conference consists of A. Conte (Torino), J.H. Davenport (Bath), A. Galligo (Nice), D. Yu. Grigoriev (Petersburg), J. Heintz (Buenos Aires), W. Lassner (Leipzig), D. Lazard (paris), H.M. MOller (Hagen), T. Mora (Genova), M. Pohst (DUsseldort), T. Recio (Santander), J.J.



A Royal Road To Algebraic Geometry


A Royal Road To Algebraic Geometry
DOWNLOAD
Author : Audun Holme
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-10-06

A Royal Road To Algebraic Geometry written by Audun Holme and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-06 with Mathematics categories.


This book is about modern algebraic geometry. The title A Royal Road to Algebraic Geometry is inspired by the famous anecdote about the king asking Euclid if there really existed no simpler way for learning geometry, than to read all of his work Elements. Euclid is said to have answered: “There is no royal road to geometry!” The book starts by explaining this enigmatic answer, the aim of the book being to argue that indeed, in some sense there is a royal road to algebraic geometry. From a point of departure in algebraic curves, the exposition moves on to the present shape of the field, culminating with Alexander Grothendieck’s theory of schemes. Contemporary homological tools are explained. The reader will follow a directed path leading up to the main elements of modern algebraic geometry. When the road is completed, the reader is empowered to start navigating in this immense field, and to open up the door to a wonderful field of research. The greatest scientific experience of a lifetime!



Lectures On Logarithmic Algebraic Geometry


Lectures On Logarithmic Algebraic Geometry
DOWNLOAD
Author : Arthur Ogus
language : en
Publisher: Cambridge University Press
Release Date : 2018-11-08

Lectures On Logarithmic Algebraic Geometry written by Arthur Ogus and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-08 with Mathematics categories.


A self-contained introduction to logarithmic geometry, a key tool for analyzing compactification and degeneration in algebraic geometry.



Toric Varieties


Toric Varieties
DOWNLOAD
Author : David A. Cox
language : en
Publisher: American Mathematical Society
Release Date : 2024-06-25

Toric Varieties written by David A. Cox and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-25 with Mathematics categories.


Toric varieties form a beautiful and accessible part of modern algebraic geometry. This book covers the standard topics in toric geometry; a novel feature is that each of the first nine chapters contains an introductory section on the necessary background material in algebraic geometry. Other topics covered include quotient constructions, vanishing theorems, equivariant cohomology, GIT quotients, the secondary fan, and the minimal model program for toric varieties. The subject lends itself to rich examples reflected in the 134 illustrations included in the text. The book also explores connections with commutative algebra and polyhedral geometry, treating both polytopes and their unbounded cousins, polyhedra. There are appendices on the history of toric varieties and the computational tools available to investigate nontrivial examples in toric geometry. Readers of this book should be familiar with the material covered in basic graduate courses in algebra and topology, and to a somewhat lesser degree, complex analysis. In addition, the authors assume that the reader has had some previous experience with algebraic geometry at an advanced undergraduate level. The book will be a useful reference for graduate students and researchers who are interested in algebraic geometry, polyhedral geometry, and toric varieties.



Invitation To Nonlinear Algebra


Invitation To Nonlinear Algebra
DOWNLOAD
Author : Mateusz Michałek
language : en
Publisher: American Mathematical Society
Release Date : 2021-03-05

Invitation To Nonlinear Algebra written by Mateusz Michałek and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-05 with Mathematics categories.


Nonlinear algebra provides modern mathematical tools to address challenges arising in the sciences and engineering. It is useful everywhere, where polynomials appear: in particular, data and computational sciences, statistics, physics, optimization. The book offers an invitation to this broad and fast-developing area. It is not an extensive encyclopedia of known results, but rather a first introduction to the subject, allowing the reader to enter into more advanced topics. It was designed as the next step after linear algebra and well before abstract algebraic geometry. The book presents both classical topics—like the Nullstellensatz and primary decomposition—and more modern ones—like tropical geometry and semidefinite programming. The focus lies on interactions and applications. Each of the thirteen chapters introduces fundamental concepts. The book may be used for a one-semester course, and the over 200 exercises will help the readers to deepen their understanding of the subject.