Introductory Statistical Inference

DOWNLOAD
Download Introductory Statistical Inference PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introductory Statistical Inference book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Introductory Statistical Inference
DOWNLOAD
Author : Nitis Mukhopadhyay
language : en
Publisher: CRC Press
Release Date : 2006-02-07
Introductory Statistical Inference written by Nitis Mukhopadhyay and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-02-07 with Mathematics categories.
Introductory Statistical Inference develops the concepts and intricacies of statistical inference. With a review of probability concepts, this book discusses topics such as sufficiency, ancillarity, point estimation, minimum variance estimation, confidence intervals, multiple comparisons, and large-sample inference. It introduces techniques of two-stage sampling, fitting a straight line to data, tests of hypotheses, nonparametric methods, and the bootstrap method. It also features worked examples of statistical principles as well as exercises with hints. This text is suited for courses in probability and statistical inference at the upper-level undergraduate and graduate levels.
Introduction To Statistical Inference
DOWNLOAD
Author : Jack C. Kiefer
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Introduction To Statistical Inference written by Jack C. Kiefer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This book is based upon lecture notes developed by Jack Kiefer for a course in statistical inference he taught at Cornell University. The notes were distributed to the class in lieu of a textbook, and the problems were used for homework assignments. Relying only on modest prerequisites of probability theory and cal culus, Kiefer's approach to a first course in statistics is to present the central ideas of the modem mathematical theory with a minimum of fuss and formality. He is able to do this by using a rich mixture of examples, pictures, and math ematical derivations to complement a clear and logical discussion of the important ideas in plain English. The straightforwardness of Kiefer's presentation is remarkable in view of the sophistication and depth of his examination of the major theme: How should an intelligent person formulate a statistical problem and choose a statistical procedure to apply to it? Kiefer's view, in the same spirit as Neyman and Wald, is that one should try to assess the consequences of a statistical choice in some quan titative (frequentist) formulation and ought to choose a course of action that is verifiably optimal (or nearly so) without regard to the perceived "attractiveness" of certain dogmas and methods.
Statistical Inference For Everyone
DOWNLOAD
Author : Brian Blais
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2014-08-27
Statistical Inference For Everyone written by Brian Blais and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-27 with Mathematics categories.
Approaching an introductory statistical inference textbook in a novel way, this book is motivated by the perspective of "probability theory as logic". Targeted to the typical "Statistics 101" college student this book covers the topics typically treated in such a course - but from a fresh angle. This book walks through a simple introduction to probability, and then applies those principles to all problems of inference. Topics include hypothesis testing, data visualization, parameter inference, and model comparison. Statistical Inference for Everyone is freely available under the Creative Commons License, and includes a software library in Python for making calculations and visualizations straightforward.
All Of Statistics
DOWNLOAD
Author : Larry Wasserman
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-12-11
All Of Statistics written by Larry Wasserman and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-11 with Mathematics categories.
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Probability And Statistical Inference
DOWNLOAD
Author : Robert Bartoszynski
language : en
Publisher: John Wiley & Sons
Release Date : 2007-11-16
Probability And Statistical Inference written by Robert Bartoszynski and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-11-16 with Mathematics categories.
Now updated in a valuable new edition—this user-friendly book focuses on understanding the "why" of mathematical statistics Probability and Statistical Inference, Second Edition introduces key probability and statis-tical concepts through non-trivial, real-world examples and promotes the developmentof intuition rather than simple application. With its coverage of the recent advancements in computer-intensive methods, this update successfully provides the comp-rehensive tools needed to develop a broad understanding of the theory of statisticsand its probabilistic foundations. This outstanding new edition continues to encouragereaders to recognize and fully understand the why, not just the how, behind the concepts,theorems, and methods of statistics. Clear explanations are presented and appliedto various examples that help to impart a deeper understanding of theorems and methods—from fundamental statistical concepts to computational details. Additional features of this Second Edition include: A new chapter on random samples Coverage of computer-intensive techniques in statistical inference featuring Monte Carlo and resampling methods, such as bootstrap and permutation tests, bootstrap confidence intervals with supporting R codes, and additional examples available via the book's FTP site Treatment of survival and hazard function, methods of obtaining estimators, and Bayes estimating Real-world examples that illuminate presented concepts Exercises at the end of each section Providing a straightforward, contemporary approach to modern-day statistical applications, Probability and Statistical Inference, Second Edition is an ideal text for advanced undergraduate- and graduate-level courses in probability and statistical inference. It also serves as a valuable reference for practitioners in any discipline who wish to gain further insight into the latest statistical tools.
Introduction To Linear Models And Statistical Inference
DOWNLOAD
Author : Steven J. Janke
language : en
Publisher: John Wiley & Sons
Release Date : 2005-09-15
Introduction To Linear Models And Statistical Inference written by Steven J. Janke and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-09-15 with Mathematics categories.
A multidisciplinary approach that emphasizes learning by analyzing real-world data sets This book is the result of the authors' hands-on classroom experience and is tailored to reflect how students best learn to analyze linear relationships. The text begins with the introduction of four simple examples of actual data sets. These examples are developed and analyzed throughout the text, and more complicated examples of data sets are introduced along the way. Taking a multidisciplinary approach, the book traces the conclusion of the analyses of data sets taken from geology, biology, economics, psychology, education, sociology, and environmental science. As students learn to analyze the data sets, they master increasingly sophisticated linear modeling techniques, including: * Simple linear models * Multivariate models * Model building * Analysis of variance (ANOVA) * Analysis of covariance (ANCOVA) * Logistic regression * Total least squares The basics of statistical analysis are developed and emphasized, particularly in testing the assumptions and drawing inferences from linear models. Exercises are included at the end of each chapter to test students' skills before moving on to more advanced techniques and models. These exercises are marked to indicate whether calculus, linear algebra, or computer skills are needed. Unlike other texts in the field, the mathematics underlying the models is carefully explained and accessible to students who may not have any background in calculus or linear algebra. Most chapters include an optional final section on linear algebra for students interested in developing a deeper understanding. The many data sets that appear in the text are available on the book's Web site. The MINITAB(r) software program is used to illustrate many of the examples. For students unfamiliar with MINITAB(r), an appendix introduces the key features needed to study linear models. With its multidisciplinary approach and use of real-world data sets that bring the subject alive, this is an excellent introduction to linear models for students in any of the natural or social sciences.
Probability And Statistical Inference
DOWNLOAD
Author : Nitis Mukhopadhyay
language : en
Publisher: CRC Press
Release Date : 2020-08-30
Probability And Statistical Inference written by Nitis Mukhopadhyay and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-30 with Mathematics categories.
Priced very competitively compared with other textbooks at this level! This gracefully organized textbook reveals the rigorous theory of probability and statistical inference in the style of a tutorial, using worked examples, exercises, numerous figures and tables, and computer simulations to develop and illustrate concepts. Beginning wi
Essential Statistical Inference
DOWNLOAD
Author : Dennis D. Boos
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-02-06
Essential Statistical Inference written by Dennis D. Boos and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-02-06 with Mathematics categories.
This book is for students and researchers who have had a first year graduate level mathematical statistics course. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems. An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology. Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods.
A First Course In Statistical Inference
DOWNLOAD
Author : Jonathan Gillard
language : en
Publisher: Springer
Release Date : 2020-04-21
A First Course In Statistical Inference written by Jonathan Gillard and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-21 with Mathematics categories.
This book offers a modern and accessible introduction to Statistical Inference, the science of inferring key information from data. Aimed at beginning undergraduate students in mathematics, it presents the concepts underpinning frequentist statistical theory. Written in a conversational and informal style, this concise text concentrates on ideas and concepts, with key theorems stated and proved. Detailed worked examples are included and each chapter ends with a set of exercises, with full solutions given at the back of the book. Examples using R are provided throughout the book, with a brief guide to the software included. Topics covered in the book include: sampling distributions, properties of estimators, confidence intervals, hypothesis testing, ANOVA, and fitting a straight line to paired data. Based on the author’s extensive teaching experience, the material of the book has been honed by student feedback for over a decade. Assuming only some familiarity with elementary probability, this textbook has been devised for a one semester first course in statistics.