Investigating The Hydrogeotechnical And Microstructural Properties Of Cemented Paste Backfill Using The Cuaps Apparatus

DOWNLOAD
Download Investigating The Hydrogeotechnical And Microstructural Properties Of Cemented Paste Backfill Using The Cuaps Apparatus PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Investigating The Hydrogeotechnical And Microstructural Properties Of Cemented Paste Backfill Using The Cuaps Apparatus book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Investigating The Hydrogeotechnical And Microstructural Properties Of Cemented Paste Backfill Using The Cuaps Apparatus
DOWNLOAD
Author : Erol Yilmaz
language : en
Publisher:
Release Date : 2013
Investigating The Hydrogeotechnical And Microstructural Properties Of Cemented Paste Backfill Using The Cuaps Apparatus written by Erol Yilmaz and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with categories.
Assessment Of The Modified Cuaps Apparatus To Estimate In Situ Properties Of Cemented Paste Backfill
DOWNLOAD
Author : Erol Yilmaz
language : en
Publisher:
Release Date : 2010
Assessment Of The Modified Cuaps Apparatus To Estimate In Situ Properties Of Cemented Paste Backfill written by Erol Yilmaz and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Compressive strength categories.
This paper evaluates some improvements in the design of a laboratory apparatus called curing under applied pressure system (CUAPS) designed to estimate in situ properties of cemented paste backfill (CPB). This apparatus is effective in conducting the following tests on samples during curing: (i) One-dimensional consolidation test with or without pore water pressure (PWP) measurement, (ii) PWP dissipation test, (iii) saturated hydraulic conductivity (permeability) test, and (iv) curing under constant or variable vertical pressure. Unconfined compression tests can be also performed on consolidated CPB samples after each of these tests. The modified CUAPS apparatus is assessed in this paper. Preliminary results are promising and validate the functionality of the CUAPS apparatus, which will contribute to the knowledge on consolidation behaviour of in situ CPB material.
Geotechnical Characterization Of Cemented Paste Backfill
DOWNLOAD
Author : Erol Yilmaz
language : en
Publisher: LAP Lambert Academic Publishing
Release Date : 2015-02-10
Geotechnical Characterization Of Cemented Paste Backfill written by Erol Yilmaz and has been published by LAP Lambert Academic Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-02-10 with categories.
Cemented paste backfill (CPB) technology is now widely utilized by most modern underground hard rock mines in Canada, Australia, the United States, South Africa and Turkey. CPB is a cementitious material produced with three ingredients: filtered wet tailings, hydraulic binders, and mixing water to ensure the paste's flowability in pipeline for final deposition. This book investigates CPB technology using a recently designed lab apparatus called CUAPS (curing under applied pressure system) that estimates in situ CPB conditions. The CUAPS apparatus has been demonstrated as a practical and cost-effective tool that effectively replaces the traditional approach using non-perforated plastic moulds. The results obtained with the CUAPS apparatus will contribute to improve the safety of mines and miners and provide a better understanding of paste backfill. Each section of this book represents an original contribution to the science and engineering of paste backfill. This book provides some theoretical and experimental bases for designing paste backfill mixtures in terms of cost savings and safety and for incorporating in situ backfill behaviour and properties.
Strength And Environmental Properties Of Cemented Paste Backfill That Contains Sodium Silicate
DOWNLOAD
Author : Hoda Mohammad Pour
language : en
Publisher:
Release Date : 2020
Strength And Environmental Properties Of Cemented Paste Backfill That Contains Sodium Silicate written by Hoda Mohammad Pour and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with categories.
Mining is an important industry that plays a significant role in the development of human civilization and economies. However, the underground mining process produces a large volume of mine wastes (e.g., tailings) as well as creates large voids that require filling, typically with an engineering backfill material. Filling the voids with mine waste materials provides an environmental-friendly way of disposing mining waste. It is also an effective way of increasing ore recovery and improving the safety of miners. One of the best techniques of mine backfill is called cemented paste backfill (CPB), which is typically a mixture of tailings, binder and water. The most common binder used in the preparation of CPB is Portland cement (PC). PC is not only a costly binder, but its production is highly energy-intensive and also generates a large amount of CO2. The cement consumption can represent up to 75% of the cost of CPB. These above-mentioned factors have compelled mining companies to seek for cement alternatives that enhance the engineering properties of the CPB, decrease the cement content and reduce the carbon footprint of the mining industry. Sodium silicate is the most recent chemical additive that is proposed to reduce the binder content in CPB. Sodium silicate is an alkaline solution that is used to activate a pozzolanic material, such as cement, slag and Fly ash. However, the effect of sodium silicate on the strength and key environmental properties (permeability or saturated hydraulic conductivity, reactivity) of CPB is not well understood. The objective of this thesis is to investigate the possibility of using sodium silicate as an activator in cemented paste backfill and obtain an improvement in the aforementioned engineering properties of CPB. In order to determine the effect of the sodium silicate on backfill properties, some CPB testing methods were developed to fulfill the objectives of this research. Thus, the evolution of hydraulic, mechanical and microstructural properties of CPB samples containing sodium silicate (SS-CPB) have been tested or monitored at different curing ages (1, 3, 7, 28 and 90 days) and different CPB mixtures as well. The results of these studies show that activating CPB with sodium silicate develop CPB strength faster than CPB samples without sodium silicate. In addition, hydraulic conductivity and reactivity results show a positive change in samples containing sodium silicate compared to free sodium silicate CPB samples. Indeed, this activation leads to decreasing permeability and reactivity due to the formation of cement hydration products and acceleration of the binder hydration process. Moreover, binder type and content in the presence of sodium silicate as an alkali activator in the CPB play a significant role in lowering hydraulic conductivity and reactivity of CPB.
Cemented Paste Backfill
DOWNLOAD
Author : Yong Wang
language : en
Publisher: Elsevier
Release Date : 2024-05-19
Cemented Paste Backfill written by Yong Wang and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-19 with Science categories.
In view of the demand for the research on the transport resistance characteristics and mechanical properties of CPB under the influence of temperature effect, the book comprehensively describes the studies on rheological and mechanical properties of CPB materials used in underground metal mines. This book covers a wide range of topics, including a new definition of CPB, past participation and flow-induced corrosion of pipeline under the constant temperature condition, multiphysics processes in CPB and the associated consolidation process, the variation of rheological parameters and transport resistance, prediction model for rheological properties, mechanical behavior and properties of CPB and fiber-reinforced CPB, and control technology to reduce the adverse effect of temperature. Therefore, an academic framework for the transport resistance characteristics and mechanical properties under the temperature effect was established in this book. - Investigates rheological properties and multiphysics processes in CPB materials around the world - Looks into systematic studies on pipe transport and mechanical properties of CPB under temperature effects - Focuses mainly on the effect of temperature on paste transport and mechanical properties under the temperature effect, which provides a theoretical basis for safe and efficient filling operation and associated future research in this field - Offer in-depth insights into the evolution of the rheological and mechanical properties of CPB under the effect of temperatures
Microscale Analysis Of Cemented Paste Backfill Microform
DOWNLOAD
Author : Dragana Simon
language : en
Publisher: Library and Archives Canada = Bibliothèque et Archives Canada
Release Date : 2005
Microscale Analysis Of Cemented Paste Backfill Microform written by Dragana Simon and has been published by Library and Archives Canada = Bibliothèque et Archives Canada this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with categories.
This study shows that wave-based techniques provide insight into some of the factors that affect the behaviour of CPB. Electromagnetic wave-based measurements are sensitive to changes in structure, free water content, bound water content, and ion availability and/or mobility. This research shows that the effective conductivity is a useful parameter to monitor the hydration process, even in low cement content pastes. Shear wave-based measurements are a useful tool to monitor the stiffness evolution in CPB. Apparent yield stress measurements are sensitive to particle-particle interactions and reflect changes in the material's composition, including water content, binder content and type, and chemical additives. All tests show that during the early stages, Portland cement hydration has little effect on the microstructure development, stiffness and flow characteristics of cement-containing pastes. The macroscopic properties of cemented paste backfill (CPB), including fluidity and strength, depend on particle-particle and particle-fluid interactions; thus, it is important to determine the fundamental interactions between the paste constituents to optimize paste design. Specific topics of interest in this study include the effects of paste composition (e.g., binder content and type, and pore fluid chemistry) on the microstructure development, and electromagnetic, rheological and mechanical properties (e.g., setting time, unconfined compressive strength and stiffness) with time. The effect of the pore fluid chemistry on the properties of the CPB depends on the type and amount of the additive. In CPB, calcium chloride and sodium chloride accelerate cement hydration and improve the UCS during the first six months of hydration. Conversely, ferric chloride and hydrochloric acid retard the hydration and setting of CPB. The tested superplasticizers retard cement hydration, increase the UCS and lower the apparent yield stress of CPB. A drawback to using the superplasticizers tested in this study is that a high shear stress is required to re-initiate flow in the pastes.
In Situ Properties And Liquefaction Potential Of Cemented Paste Backfill Microform
DOWNLOAD
Author : Kim-Anne Le Roux
language : en
Publisher: National Library of Canada = Bibliothèque nationale du Canada
Release Date : 2004
In Situ Properties And Liquefaction Potential Of Cemented Paste Backfill Microform written by Kim-Anne Le Roux and has been published by National Library of Canada = Bibliothèque nationale du Canada this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with categories.
Mercury intrusion porosimetry as well as semi-qualitative image analysis techniques such as scanning electron microscopy, microCT and visual analysis software were used to develop an understanding of the structure developed in field CPB in both the macro and micro scale. Standard oedometer consolidation testing with a modified loading rate was used to investigate the interrelationship of loading rate, which simulates rate of paste accumulation in a stope and the hydration of binder of the paste. The results show that the structure that develops is sensitive to both the binder content of the CPB and the rate of paste accumulation. Cemented paste backfill (CPB) has gained increasing popularity in the last 5 to 10 years and is used routinely in several mines. However, most of the CPB designs are based on laboratory prepared CPB material properties and there is growing awareness that the field CPB may be different from the laboratory prepared material. A field based investigation quantified the extent to which the field material differs from laboratory material. Not only is the field material more heterogeneous than expected, but on average it has a higher void ratio and a lower degree of saturation. These differences impact the performance of the field material. Numerical analysis using FLAC 3D was undertaken to show the influence of the field condition on the stability of the CPB. This research provides practical recommendations for industrial application and provides a framework for further investigation of CPB. Several research projects arising from this initial work are already underway through the Lassonde Institute at the University of Toronto, and several more are at the proposal stage. Static and dynamic liquefaction testing of early age CPB showed that liquefaction due to self-weight alone is unlikely but that blasting too close to the CPB can mobilize the material. Practical recommendations such as limiting blasting in proximity to early age CPB and cordoning off vulnerable areas during the critical initial 24 hr period that the paste is vulnerable to dynamic liquefaction. The cyclic liquefaction results are believed to be the first reported for cemented paste backfill.
Temperature Dependency Of The Rheological Properties And Strength Of Cemented Paste Backfill That Contains Sodium Silicate
DOWNLOAD
Author : Ghada Abdulbaqi Ali
language : en
Publisher:
Release Date : 2021
Temperature Dependency Of The Rheological Properties And Strength Of Cemented Paste Backfill That Contains Sodium Silicate written by Ghada Abdulbaqi Ali and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.
Over the past decades, cemented paste backfill (CPB) has become a common, environmentally friendly method of managing mine wastes (such as tailings). This technology allows up to 60% of the total amount of tailings to be reused and filled in the mine stopes after converting them into cemented material. Beside reducing the environmental risks associated with the traditional disposal of these materials, turning them into cemented material and placing them in the underground mine stopes can also provide secondary support for these stopes in addition to minimizing the risk of ground subsidence in the mine area. CPB is an engineered mixture of tailings, water, and hydraulic binder (such as cement, blast furnace slag, and fly ash) that is mixed in the paste plant and delivered into the mine stopes through a gravity or pumping based transportation system. During the transportation of CPB through the delivery system pipelines, the flowability of CPB depends on the rheology of the transported CPB, which is affected by different factors, such as the transportation time, temperature variation, binder type, and chemical composition of these mixtures. In addition, the performance of CPB, after placing the CPB mixture into the mine stopes, is mainly dependent on the role of the hydraulic binder, as it increases the mechanical strength of the mixture through the process of cement hydration. The mechanical strength is also influenced by different factors, such as time progress, temperature variation, and presence of chemical additives. It has previously been found that fresh CPB transported and/or placed in the mine stopes can be susceptible to temperature variation of different sources, such as the climatic effects, heat generated from the surrounding rocks, and heat generated during the process of cement hydration. Unsuitable flowability of CPB through the delivery system might lead to significant financial losses due to clogging of pipelines with unexpected hardening of CPB during transportation, which will cause delay in work and possible damages to the pipelines. Also, failure of CPB structure in the mine stopes due to inappropriate mechanical strength may cause casualties to the mine workers as well as significant environmental and economic damages. Many researchers studied the rheological properties and/or strength development of CPB under the individual effect of any of the aforementioned factors. Additionally, many researchers have evaluated the coupled effect of some of these factors on the rheology and mechanical strength of CPB material. Hitherto, there are currently no studies that addressed the combined effect of all these conditions on the rheological properties and strength development of CPB. At the first stage of this M.A.Sc. study, a series of experimental tests was conducted on fresh CPB in order to determine the combined effect of time, temperature, binder content, and chemical additives on the rheological properties of CPB. These experiments include rheological properties test (yield stress and viscosity), microstructural analysis (thermal analysis and XRD), chemical analysis (pH and Zeta potential), and monitoring tests (electrical conductivity), which were conducted on 125 CPB samples that were mixed and prepared at different temperatures (2oC, 20oC, 35oC) and cured for different curing time (0 hrs., 0.25 hrs., 1 hr., 2hrs, and 4 hrs.). These samples were prepared with different blends of hydraulic binders (PCI, PCI/Slag, and PCI/FA) and contained different dosages of sodium silicate (0%, 0.1%, 0.3%, and 0.5%). The results obtained show that rheology of CPB increases with the progress of curing time. It also increases with the increase in the initial (mixing and curing) temperature and content of sodium silicate. It was also found that the partial usage of slag and FA reduces the rheological properties. However, CPBs containing PCI/FA as binder have lower rheological properties, and thus better flowability, than those that contain PCI/Slag as binder. At the second stage of this M.A.Sc. study, in order to understand the combined effect of time, temperature and sodium silicate content on the strength development of slag-CPB, unconfined compression (UCS) test, microstructural analysis (thermal analysis and MIP), and monitoring tests (electrical conductivity, suction, and volumetric water content) were conducted on 72 CPB samples that were prepared with PCI-Slag as a binder, cured for different times (1 day, 3 days, 7 days, and 28 days) under different curing temperatures of (2oC, 20oC, 35oC), and contained different dosages of sodium silicate (0%, 0.3% and 0.5%). The results obtained at this stage showed that the strength development of slag-CPB increases with the progress of curing time and temperature. It also increases with the increase in the sodium silicate content. Also, the combined effect of high temperature, high dosage of sodium silicate and longer curing time showed significant enhancement in the mechanical strength of slag-CPB. The findings of this M.A.Sc. research will contribute to cost effective, efficient, and safer design of CPB structures in the mine areas. It will also help in minimizing financial loss associated with unsuitable flowability of CPB transported in the CPB delivery system besides reducing the risks of human loss, and the environmental and economic damages associated with the failure of CPB structures.
Mechanical Properties Of Cemented Paste Backfill Under Low Confining Stress
DOWNLOAD
Author : Andrew Ning Pan
language : en
Publisher:
Release Date : 2019
Mechanical Properties Of Cemented Paste Backfill Under Low Confining Stress written by Andrew Ning Pan and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.
Cemented paste backfill (CPB) plays an increasingly important role in the mining industry due to rapid delivery rate, tight-filling characteristics, relatively insignificant water management issues during filling, and generally uniform as-placed mechanical properties. The most common basis for assessing backfill strength is Unconfined Compressive Strength (UCS), and some of the most commonly used design methods have UCS as a fundamental design parameter. However, actual CPB properties and behavior under the range of confining stresses relevant to these design methods has been studied very little. This work uses UCS tests and a novel direct tensile test method and compares test results with strengths obtained from direct shear tests. A form of punching shear was also investigated, but the results were found unsatisfactory for design purposes. For materials with UCS up to about 1 MPa, the UCS and tensile strengths are consistent with the Mohr-Coulomb failure envelope obtained from direct shear tests.
Reactivity Of Cemented Paste Backfill
DOWNLOAD
Author : Zaid Aldhafeeri
language : en
Publisher:
Release Date : 2018
Reactivity Of Cemented Paste Backfill written by Zaid Aldhafeeri and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.
Mining has been one of the main industries in the course of the development of human civilization and economies of various nations. However, every industry has issues, and one of the problems the mining industry has faced is the management of waste, especially sulphide-bearing tailings, which are considered to be a global environmental problem. This issue puts pressure on the mining industry to seek alternative approaches for tailings management. Among the several different types of methods used, cemented paste backfilling is one of the technologies that offers good management practices for the disposal of tailings in underground mines worldwide. Cemented paste backfill (CPB) is a cementitious composite made from a mixture of mine tailings, water and binder. This technology offers several advantages, such as improving the production and safety conditions of underground mines. Among these advantages, CPB is a promising solution for the management of sulphidic tailings, which are considered to be reactive materials (i.e., not chemically stable in an atmospheric condition) and the main source of acid mine drainage, which constitutes a serious environmental challenge faced by mining companies worldwide. Such tailings, if they come into direct contact with atmospheric elements (mainly oxygen and water), face oxidation of their sulphidic minerals, thus causing the release of acidic drainage (i.e., acid mine drainage) and several types of heavy metals into surrounding water bodies and land. Therefore, the reactivity of sulphidic tailings with and without cement content can be considered as a key indicator of the environmental behavior and durability performance of CPB systems. For a better understanding of the reactivity, it is important to investigate the influencing factors. In this research, several influencing factors are experimentally studied by conducting oxygen consumption tests on different sulphidic CPB mixtures as well as their tailings under different operational and environmental conditions. These factors include time, curing temperature, initial sulphate content, curing stress, mechanical damage, binder type and content, and the addition of mineral admixtures. In addition, several microstructural techniques (e.g., x-ray diffraction and scanning electron microscopy) are applied in order to understand the changes in the CPB matrices and identify newly formed products. The results reveal that the reactivity of CPB is affected by several factors (e.g., curing time, initial sulphate content, ageing, curing and atmospheric temperature, binder type and content, vertical curing stress, filling strategy, hydration and drainage, etc.), either alone or in combination. These factors can affect reactivity either positively or negatively. It is observed that CPB reactivity decreases with increasing curing time, temperature (i.e., curing and atmospheric temperatures), curing stress, binder content, the addition of mineral admixtures, degree of saturation, and the binder hydration process, whereas reactivity increases with increases in sulphide minerals (e.g., pyrite), initial sulphate content, mechanical damage, and with decreased degrees of saturation and binder content. The effect of sulphate on the reactivity of CPB is based on the initial sulphate content as well as curing time and temperature. It is concluded that the reactivity of CPB systems is time- and temperature-dependent with respect to other factors. Also, binders play a significant role in lowering CPB reactivity due to their respective hydration processes.