Isolating Blocks For Periodic Orbits

DOWNLOAD
Download Isolating Blocks For Periodic Orbits PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Isolating Blocks For Periodic Orbits book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Isolating Blocks For Periodic Orbits
DOWNLOAD
Author : M. A. Bertolim
language : en
Publisher:
Release Date : 2005
Isolating Blocks For Periodic Orbits written by M. A. Bertolim and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Blocks (Group theory) categories.
Periodic Orbits Stability And Resonances
DOWNLOAD
Author : G.E.O. Giacaglia
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Periodic Orbits Stability And Resonances written by G.E.O. Giacaglia and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Science categories.
The subjects of resonance and stability are closely related to the problem of evolution of the solar system. It is a physically involving problem and the methods available to mathematics today seem unsatisfactory to produce pure non linear ways of attack. The linearization process in both subjects is clearly of doubtful significance, so that, even if very restrictive, numerical solutions are still the best and more valuable sources of informations. It is quite possible that we know now very little more of the entire problem that was known to Poincare, with the advantage that we can now compute much faster and with much more precision. We feel that the papers collected in this Symposium have contributed a step forward to the comprehension of Resonance, Periodic Orbits and Stability. In a field like this, it would be a surprise if one had gone a long way toward that comprehension, during the short time of two weeks. But we are sure that the joint efforts of all the scientists involved has produced and will produce a measurable acceleration in the process. If this is true it will be a great satisfaction to us that this has happened in Brasil. The Southern Hemisphere in America has now begun to participate actively in the Astro nomical Society and for this, we are grateful to everyone who has helped.
Isolated Invariant Sets And The Morse Index
DOWNLOAD
Author : Charles C. Conley
language : en
Publisher: American Mathematical Soc.
Release Date : 1978-12-31
Isolated Invariant Sets And The Morse Index written by Charles C. Conley and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1978-12-31 with Mathematics categories.
This volume contains lectures from the Conference Board of Mathematical Sciences meeting held at the University of Colorado on May 31-June 4, 1976. The lectures consist of an expository discussion of basic results for topological flows and a somewhat more detailed discussion of isolated invariant sets and continuation. The construction of the index for isolated invariant sets is new and allows more general application than previous ones. Also, the index itself is endowed with more structure and the continuation theorem is modified to take this new structure into account. Some elementary applications are given, but the main emphasis is on the abstract theory.
Geometric Methods For Discrete Dynamical Systems
DOWNLOAD
Author : Robert W. Easton
language : en
Publisher: Oxford University Press
Release Date : 1998-02-26
Geometric Methods For Discrete Dynamical Systems written by Robert W. Easton and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-02-26 with Mathematics categories.
This book looks at dynamics as an iteration process where the output of a function is fed back as an input to determine the evolution of an initial state over time. The theory examines errors which arise from round-off in numerical simulations, from the inexactness of mathematical models used to describe physical processes, and from the effects of external controls. The author provides an introduction accessible to beginning graduate students and emphasizing geometric aspects of the theory. Conley's ideas about rough orbits and chain-recurrence play a central role in the treatment. The book will be a useful reference for mathematicians, scientists, and engineers studying this field, and an ideal text for graduate courses in dynamical systems.
Handbook Of Dynamical Systems
DOWNLOAD
Author : B. Fiedler
language : en
Publisher: Gulf Professional Publishing
Release Date : 2002-02-21
Handbook Of Dynamical Systems written by B. Fiedler and has been published by Gulf Professional Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-02-21 with Science categories.
This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.
Arnold Diffusion For Smooth Systems Of Two And A Half Degrees Of Freedom
DOWNLOAD
Author : Vadim Kaloshin
language : en
Publisher: Princeton University Press
Release Date : 2020-11-03
Arnold Diffusion For Smooth Systems Of Two And A Half Degrees Of Freedom written by Vadim Kaloshin and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-03 with Science categories.
The first complete proof of Arnold diffusion—one of the most important problems in dynamical systems and mathematical physics Arnold diffusion, which concerns the appearance of chaos in classical mechanics, is one of the most important problems in the fields of dynamical systems and mathematical physics. Since it was discovered by Vladimir Arnold in 1963, it has attracted the efforts of some of the most prominent researchers in mathematics. The question is whether a typical perturbation of a particular system will result in chaotic or unstable dynamical phenomena. In this groundbreaking book, Vadim Kaloshin and Ke Zhang provide the first complete proof of Arnold diffusion, demonstrating that that there is topological instability for typical perturbations of five-dimensional integrable systems (two and a half degrees of freedom). This proof realizes a plan John Mather announced in 2003 but was unable to complete before his death. Kaloshin and Zhang follow Mather's strategy but emphasize a more Hamiltonian approach, tying together normal forms theory, hyperbolic theory, Mather theory, and weak KAM theory. Offering a complete, clean, and modern explanation of the steps involved in the proof, and a clear account of background material, this book is designed to be accessible to students as well as researchers. The result is a critical contribution to mathematical physics and dynamical systems, especially Hamiltonian systems.
High Dimensional Chaotic And Attractor Systems
DOWNLOAD
Author : Vladimir G. Ivancevic
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-02-06
High Dimensional Chaotic And Attractor Systems written by Vladimir G. Ivancevic and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-02-06 with Science categories.
This graduate–level textbook is devoted to understanding, prediction and control of high–dimensional chaotic and attractor systems of real life. The objective is to provide the serious reader with a serious scientific tool that will enable the actual performance of competitive research in high–dimensional chaotic and attractor dynamics. From introductory material on low-dimensional attractors and chaos, the text explores concepts including Poincaré’s 3-body problem, high-tech Josephson junctions, and more.
The Geometry Of Hamiltonian Systems
DOWNLOAD
Author : Tudor Ratiu
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
The Geometry Of Hamiltonian Systems written by Tudor Ratiu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The papers in this volume are an outgrowth of the lectures and informal discussions that took place during the workshop on "The Geometry of Hamiltonian Systems" which was held at MSRl from June 5 to 16, 1989. It was, in some sense, the last major event of the year-long program on Symplectic Geometry and Mechanics. The emphasis of all the talks was on Hamiltonian dynamics and its relationship to several aspects of symplectic geometry and topology, mechanics, and dynamical systems in general. The organizers of the conference were R. Devaney (co-chairman), H. Flaschka (co-chairman), K. Meyer, and T. Ratiu. The entire meeting was built around two mini-courses of five lectures each and a series of two expository lectures. The first of the mini-courses was given by A. T. Fomenko, who presented the work of his group at Moscow University on the classification of integrable systems. The second mini course was given by J. Marsden of UC Berkeley, who spoke about several applications of symplectic and Poisson reduction to problems in stability, normal forms, and symmetric Hamiltonian bifurcation theory. Finally, the two expository talks were given by A. Fathi of the University of Florida who concentrated on the links between symplectic geometry, dynamical systems, and Teichmiiller theory.
Structural Stability The Theory Of Catastrophes And Applications In The Sciences
DOWNLOAD
Author : P. Hilton
language : en
Publisher: Springer
Release Date : 2006-11-14
Structural Stability The Theory Of Catastrophes And Applications In The Sciences written by P. Hilton and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-14 with Mathematics categories.
This is a progress report on an experimental program, begun a year ago, in the exploration of resonant furcations (= catastrophes) by analog simulation and direct observation - the macroscope program.
Multiple Time Scale Dynamical Systems
DOWNLOAD
Author : Christopher K.R.T. Jones
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Multiple Time Scale Dynamical Systems written by Christopher K.R.T. Jones and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Systems with sub-processes evolving on many different time scales are ubiquitous in applications: chemical reactions, electro-optical and neuro-biological systems, to name just a few. This volume contains papers that expose the state of the art in mathematical techniques for analyzing such systems. Recently developed geometric ideas are highlighted in this work that includes a theory of relaxation-oscillation phenomena in higher dimensional phase spaces. Subtle exponentially small effects result from singular perturbations implicit in certain multiple time scale systems. Their role in the slow motion of fronts, bifurcations, and jumping between invariant tori are all explored here. Neurobiology has played a particularly stimulating role in the development of these techniques and one paper is directed specifically at applying geometric singular perturbation theory to reveal the synchrony in networks of neural oscillators.