[PDF] Java Gui With Mysql Database And Image Processing - eBooks Review

Java Gui With Mysql Database And Image Processing


Java Gui With Mysql Database And Image Processing
DOWNLOAD

Download Java Gui With Mysql Database And Image Processing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Java Gui With Mysql Database And Image Processing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Python Gui For Signal And Image Processing


Python Gui For Signal And Image Processing
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: SPARTA PUBLISHING
Release Date : 2019-10-05

Python Gui For Signal And Image Processing written by Vivian Siahaan and has been published by SPARTA PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-05 with Computers categories.


You will learn to create GUI applications using the Qt toolkit. The Qt toolkit, also popularly known as Qt, is a cross-platform application and UI framework developed by Trolltech, which is used to develop GUI applications. You will develop an existing GUI by adding several Line Edit widgets to read input, which are used to set the range and step of the graph (signal). Next, Now, you can use a widget for each graph. Add another Widget from Containers in gui_graphics.ui using Qt Designer. Then, Now, you can use two Widgets, each of which has two canvases. The two canvases has QVBoxLayout in each Widget. Finally, you will apply those Widgets to display the results of signal and image processing techniques.



Learn From Scratch Signal And Image Processing With Python Gui


Learn From Scratch Signal And Image Processing With Python Gui
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-06-14

Learn From Scratch Signal And Image Processing With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-14 with Technology & Engineering categories.


In this book, you will learn how to use OpenCV, NumPy library and other libraries to perform signal processing, image processing, object detection, and feature extraction with Python GUI (PyQt). You will learn how to filter signals, detect edges and segments, and denoise images with PyQt. You will also learn how to detect objects (face, eye, and mouth) using Haar Cascades and how to detect features on images using Harris Corner Detection, Shi-Tomasi Corner Detector, Scale-Invariant Feature Transform (SIFT), and Features from Accelerated Segment Test (FAST). In Chapter 1, you will learn: Tutorial Steps To Create A Simple GUI Application, Tutorial Steps to Use Radio Button, Tutorial Steps to Group Radio Buttons, Tutorial Steps to Use CheckBox Widget, Tutorial Steps to Use Two CheckBox Groups, Tutorial Steps to Understand Signals and Slots, Tutorial Steps to Convert Data Types, Tutorial Steps to Use Spin Box Widget, Tutorial Steps to Use ScrollBar and Slider, Tutorial Steps to Use List Widget, Tutorial Steps to Select Multiple List Items in One List Widget and Display It in Another List Widget, Tutorial Steps to Insert Item into List Widget, Tutorial Steps to Use Operations on Widget List, Tutorial Steps to Use Combo Box, Tutorial Steps to Use Calendar Widget and Date Edit, and Tutorial Steps to Use Table Widget. In Chapter 2, you will learn: Tutorial Steps To Create A Simple Line Graph, Tutorial Steps To Create A Simple Line Graph in Python GUI, Tutorial Steps To Create A Simple Line Graph in Python GUI: Part 2, Tutorial Steps To Create Two or More Graphs in the Same Axis, Tutorial Steps To Create Two Axes in One Canvas, Tutorial Steps To Use Two Widgets, Tutorial Steps To Use Two Widgets, Each of Which Has Two Axes, Tutorial Steps To Use Axes With Certain Opacity Levels, Tutorial Steps To Choose Line Color From Combo Box, Tutorial Steps To Calculate Fast Fourier Transform, Tutorial Steps To Create GUI For FFT, Tutorial Steps To Create GUI For FFT With Some Other Input Signals, Tutorial Steps To Create GUI For Noisy Signal, Tutorial Steps To Create GUI For Noisy Signal Filtering, and Tutorial Steps To Create GUI For Wav Signal Filtering. In Chapter 3, you will learn: Tutorial Steps To Convert RGB Image Into Grayscale, Tutorial Steps To Convert RGB Image Into YUV Image, Tutorial Steps To Convert RGB Image Into HSV Image, Tutorial Steps To Filter Image, Tutorial Steps To Display Image Histogram, Tutorial Steps To Display Filtered Image Histogram, Tutorial Steps To Filter Image With CheckBoxes, Tutorial Steps To Implement Image Thresholding, and Tutorial Steps To Implement Adaptive Image Thresholding. In Chapter 4, you will learn: Tutorial Steps To Generate And Display Noisy Image, Tutorial Steps To Implement Edge Detection On Image, Tutorial Steps To Implement Image Segmentation Using Multiple Thresholding and K-Means Algorithm, and Tutorial Steps To Implement Image Denoising. In Chapter 5, you will learn: Tutorial Steps To Detect Face, Eye, and Mouth Using Haar Cascades, Tutorial Steps To Detect Face Using Haar Cascades with PyQt, Tutorial Steps To Detect Eye, and Mouth Using Haar Cascades with PyQt, and Tutorial Steps To Extract Detected Objects. In Chapter 6, you will learn: Tutorial Steps To Detect Image Features Using Harris Corner Detection, Tutorial Steps To Detect Image Features Using Shi-Tomasi Corner Detection, Tutorial Steps To Detect Features Using Scale-Invariant Feature Transform (SIFT), and Tutorial Steps To Detect Features Using Features from Accelerated Segment Test (FAST). You can download the XML files from https://viviansiahaan.blogspot.com/2023/06/learn-from-scratch-signal-and-image.html.



Java Gui With Mysql Database And Image Processing


Java Gui With Mysql Database And Image Processing
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: SPARTA PUBLISHING
Release Date : 2019-08-26

Java Gui With Mysql Database And Image Processing written by Vivian Siahaan and has been published by SPARTA PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-26 with Computers categories.


In this book, you will learn how to build from scratch a criminal records management database system using Java / MySQL. All Java code for digital image processing in this book is Native Java. Intentionally not to rely on external libraries, so that readers know in detail the process of extracting digital images from scratch in Java. There are only three external libraries used in this book: Connector / J to facilitate Java to MySQL connections, JCalendar to display calendar controls, and JFreeChart to display graphics. Digital image techniques to extract image features used in this book are grascaling, sharpening, invertering, blurring, dilation, erosion, closing, opening, vertical prewitt, horizontal prewitt, Laplacian, horizontal sobel, and vertical sobel. For readers, you can develop it to store other advanced image features based on descriptors such as SIFT and others for developing descriptor based matching. In the first chapter, you will be shown the number of devices needed to be downloaded and installed. You need to know how to add external libraries to the NetBeans environment. These tools are needed so that you can run the Java scripts. In the second chapter, you will be taught how to create Crime database and its tables. In third chapter, you will be taught how to extract image features, utilizing BufferedImage class, in Java GUI. In the fourth chapter, you will be taught to create Java GUI to view, edit, insert, and delete Suspect table data. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. In the fifth chapter, you will be taught to create Java GUI to view, edit, insert, and delete Feature_Extraction table data. This table has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. All six fields (except keys) will have a BLOB data type, so that the image of the feature will be directly saved into this table. In the sixth chapter, you will add two tables: Police_Station and Investigator. These two tables will later be joined to Suspect table through another table, File_Case, which will be built in the seventh chapter. The Police_Station has six columns: police_station_id (primary key), location, city, province, telephone, and photo. The Investigator has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. Here, you will design a Java GUI to display, edit, fill, and delete data in both tables. In the seventh chapter, you will add two tables: Victim and File_Case. The File_Case table will connect four other tables: Suspect, Police_Station, Investigator and Victim. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The File_Case has seven columns: file_case_id (primary key), suspect_id (foreign key), police_station_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. Here, you will also design a Java GUI to display, edit, fill, and delete data in both tables. Finally, this book is hopefully useful for you.



Start From Scratch Digital Image Processing With Tkinter


Start From Scratch Digital Image Processing With Tkinter
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-10-21

Start From Scratch Digital Image Processing With Tkinter written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-21 with Computers categories.


"Start from Scratch: Digital Image Processing with Tkinter" is a beginner-friendly guide that delves into the basics of digital image processing using Python and Tkinter, a popular GUI library. The project is divided into distinct modules, each focusing on a specific aspect of image manipulation. The journey begins with an exploration of Image Color Space. Here, readers encounter the Main Form, which serves as the entry point to the application. It provides a user-friendly interface for loading images, selecting color spaces, and visualizing various color channels. The Fundamental Utilities play a crucial role by providing core functionalities like loading images, converting color spaces, and manipulating pixel data. The project also includes forms dedicated to displaying individual color channels and offering insights into the current color space through histograms. The Plotting Utilities module facilitates the creation of visual representations such as plots and graphs, enhancing the user's understanding of color spaces. Moving on, the Image Transformation section introduces readers to techniques like the Fast Fourier Transform (FFT). The Fast Fourier Transform Utilities module enables the implementation of FFT algorithms for converting images from spatial to frequency domains. A corresponding form allows users to view images in the frequency domain, with additional adjustments made to the plotting utilities for effective visualization. In the context of Discrete Cosine Transform (DCT), readers gain insights into algorithms and functions for transforming images. The Form for Discrete Cosine Transform aids in visualizing images in the DCT domain, while the plotting utilities are modified to accommodate these transformed images. The Discrete Sine Transform (DST) section introduces readers to DST algorithms and their role in image transformation. A dedicated form for visualizing images in the DST domain is provided, and the plotting utilities are further extended to handle these transformations effectively. Moving Average Smoothing is another critical aspect covered in the project. The Filter2D Utilities facilitate the application of moving average smoothing techniques. Additionally, metrics utilities enable the assessment of the smoothing process, with forms available for displaying both metrics and the smoothed images. Next, the project addresses Exponential Moving Average techniques, modifying the existing utilities to accommodate this specific approach. Similarly, forms for visualizing results and metrics are provided. Readers are then introduced to techniques like Median Filtering, Savitzky-Golay Filtering, and Wiener Filtering. The Filter2D Utilities are adapted to facilitate these filtering methods, and metrics utilities are employed to assess the effectiveness of each technique. Forms dedicated to each filtering method provide a platform for visualizing the results. The final section of the project explores techniques such as Total Variation Denoising, Non-Local Means Denoising, and PCA Denoising. The Filter2D Utilities are once again modified to support these denoising techniques. Metrics utilities are employed to evaluate the denoising process, and dedicated forms offer visualization capabilities. By breaking down the project into these modules, readers can systematically grasp the fundamentals of digital image processing, gradually building their skills from one concept to the next. Each section provides hands-on experience and practical knowledge, making it an ideal starting point for beginners in image processing.



Data Analysis Using Jdbc And Sql Server With Object Oriented Approach And Apache Netbeans Ide


Data Analysis Using Jdbc And Sql Server With Object Oriented Approach And Apache Netbeans Ide
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-05-24

Data Analysis Using Jdbc And Sql Server With Object Oriented Approach And Apache Netbeans Ide written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-24 with Computers categories.


This book is SQL SERVER version of our previous book titled “DATA ANALYSIS USING JDBC AND MYSQL WITH OBJECT-ORIENTED APPROACH AND APACHE NETBEANS IDE”. In this project, you will use the SQL VERSION version of Northwind database which is a sample database that was originally created by Microsoft and used as the basis for their tutorials in a variety of database products for decades. The Northwind database contains the sales data for a fictitious company called “Northwind Traders,” which imports and exports specialty foods from around the world. The Northwind database is an excellent tutorial schema for a small-business ERP, with customers, orders, inventory, purchasing, suppliers, shipping, employees, and single-entry accounting. You can download the sample database from https://viviansiahaan.blogspot.com/2023/05/data-analysis-using-jdbc-and-sql-server.html. In this project, you will design the form for every table and you will plot: the territory distribution by region; the employee distributions based on city, country, title, and region; the employee distributions based on birth date, hire date, and employee name; the employee distributions based on city, country, territory, and region; the three supplier distributions based on city, region, and country; the product distributions based on city, region, country, categorized unit price, categorized units in stock, and categorized units on order; the customer distributions based on city, region, and country; the order and freight distributions based on year, month, and week; the order and freight distributions based on day, quarter, and ship country; the order and freight distributions based on ship region, ship city, and ship name; the order and freight distributions based on shipper company, customer company, and customer city; the order and freight distributions based on customer country, employee name, and employee title; the sales distributions based on year, month, week, day, quarter, and ship country; the sales distributions based on ship region, ship city, ship name, shipper company, customer company, and customer city; the sales distributions based on customer region, customer country, employee name, employee title, employee city, and employee country; the sales distributions based on product name, category name, supplier company, supplier city, supplier region, and supplier country.



A Step By Step To Database Programming Using Python Gui And Mariadb


A Step By Step To Database Programming Using Python Gui And Mariadb
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: SPARTA PUBLISHING
Release Date : 2020-01-06

A Step By Step To Database Programming Using Python Gui And Mariadb written by Vivian Siahaan and has been published by SPARTA PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-06 with Computers categories.


In this book, you will create two desktop applications using Python GUI and MariaDB. This book is mariadb-based python programming Intentionally designed for various levels of interest and ability of learners, this book is suitable for students, engineers, and even researchers in a variety of disciplines. No advanced programming experience is needed, and only a few school-level programming skill are needed. In the first chapter, you will learn to use several widgets in PyQt5: Display a welcome message; Use the Radio Button widget; Grouping radio buttons; Displays options in the form of a check box; and Display two groups of check boxes. In chapter two, you will learn to use the following topics: Using Signal / Slot Editor; Copy and place text from one Line Edit widget to another; Convert data types and make a simple calculator; Use the Spin Box widget; Use scrollbars and sliders; Using the Widget List; Select a number of list items from one Widget List and display them on another Widget List widget; Add items to the Widget List; Perform operations on the Widget List; Use the Combo Box widget; Displays data selected by the user from the Calendar Widget; Creating a hotel reservation application; and Display tabular data using Table Widgets. In third chapter, you will learn: How to create the initial three tables project in the School database: Teacher, Class, and Subject tables; How to create database configuration files; How to create a Python GUI for inserting and editing tables; How to create a Python GUI to join and query the three tables. In fourth chapter, you will learn how to: Create a main form to connect all forms; Create a project will add three more tables to the school database: Student, Parent, and Tuition tables; Create a Python GUI for inserting and editing tables; Create a Python GUI to join and query over the three tables. In chapter five, you will join the six classes, Teacher, TClass, Subject, Student, Parent, and Tuition and make queries over those tables. In chapter six, you will create dan configure database. In this chapter, you will create Suspect table in crime database. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for this table. In chapter seven, you will create a table with the name Feature_Extraction, which has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. The six fields (except keys) will have a VARCHAR data type (200). You will also create GUI to display, edit, insert, and delete for this table. In chapter eight, you will create two tables, Police and Investigator. The Police table has six columns: police_id (primary key), province, city, address, telephone, and photo. The Investigator table has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. You will also create GUI to display, edit, insert, and delete for both tables. In chapter nine, you will create two tables, Victim and Case_File. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The Case_File table has seven columns: case_file_id (primary key), suspect_id (foreign key), police_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. You will create GUI to display, edit, insert, and delete for both tables as well.



Data Analysis Using Jdbc And Sqlite With Object Oriented Approach And Apache Netbeans Ide


Data Analysis Using Jdbc And Sqlite With Object Oriented Approach And Apache Netbeans Ide
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-04-12

Data Analysis Using Jdbc And Sqlite With Object Oriented Approach And Apache Netbeans Ide written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-12 with Computers categories.


In this project, you will use SQLite version of Northwind database which is a sample database that was originally created by Microsoft and used as the basis for their tutorials in a variety of database products for decades. The Northwind database contains the sales data for a fictitious company called “Northwind Traders,” which imports and exports specialty foods from around the world. The Northwind database is an excellent tutorial schema for a small-business ERP, with customers, orders, inventory, purchasing, suppliers, shipping, employees, and single-entry accounting. You can download the sample database from https://viviansiahaan.blogspot.com/2023/04/data-analysis-using-jdbc-and-sqlite.html. In this project, you will design the form for every table and you will plot: the territory distribution by region; the employee distributions based on city, country, title, and region; the employee distributions based on birth date, hire date, and employee name; the employee distributions based on city, country, territory, and region; the three supplier distributions based on city, region, and country; the product distributions based on city, region, country, categorized unit price, categorized units in stock, and categorized units on order; the customer distributions based on city, region, and country; the order and freight distributions based on year, month, and week; the order and freight distributions based on day, quarter, and ship country; the order and freight distributions based on ship region, ship city, and ship name; the order and freight distributions based on shipper company, customer company, and customer city; the order and freight distributions based on customer country, employee name, and employee title; the sales distributions based on year, month, week, day, quarter, and ship country; the sales distributions based on ship region, ship city, ship name, shipper company, customer company, and customer city; the sales distributions based on customer region, customer country, employee name, employee title, employee city, and employee country; the sales distributions based on product name, category name, supplier company, supplier city, supplier region, and supplier country.



Data Analysis Using Jdbc And Postgresql With Object Oriented Approach And Apache Netbeans Ide


Data Analysis Using Jdbc And Postgresql With Object Oriented Approach And Apache Netbeans Ide
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-05-17

Data Analysis Using Jdbc And Postgresql With Object Oriented Approach And Apache Netbeans Ide written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-17 with Computers categories.


This book is PostgreSQL version of our previous book titled “DATA ANALYSIS USING JDBC AND MYSQL WITH OBJECT-ORIENTED APPROACH AND APACHE NETBEANS IDE”. In this project, you will use the PostgreSQL version of Northwind database which is a sample database that was originally created by Microsoft and used as the basis for their tutorials in a variety of database products for decades. The Northwind database contains the sales data for a fictitious company called “Northwind Traders,” which imports and exports specialty foods from around the world. The Northwind database is an excellent tutorial schema for a small-business ERP, with customers, orders, inventory, purchasing, suppliers, shipping, employees, and single-entry accounting. You can download the sample database from https://viviansiahaan.blogspot.com/2023/05/data-analysis-using-jdbc-and-postgresql.html. In this project, you will design the form for every table and you will plot: the territory distribution by region; the employee distributions based on city, country, title, and region; the employee distributions based on birth date, hire date, and employee name; the employee distributions based on city, country, territory, and region; the three supplier distributions based on city, region, and country; the product distributions based on city, region, country, categorized unit price, categorized units in stock, and categorized units on order; the customer distributions based on city, region, and country; the order and freight distributions based on year, month, and week; the order and freight distributions based on day, quarter, and ship country; the order and freight distributions based on ship region, ship city, and ship name; the order and freight distributions based on shipper company, customer company, and customer city; the order and freight distributions based on customer country, employee name, and employee title; the sales distributions based on year, month, week, day, quarter, and ship country; the sales distributions based on ship region, ship city, ship name, shipper company, customer company, and customer city; the sales distributions based on customer region, customer country, employee name, employee title, employee city, and employee country; the sales distributions based on product name, category name, supplier company, supplier city, supplier region, and supplier country.



Three Projects Sql Server And Python Gui For Data Analysis


Three Projects Sql Server And Python Gui For Data Analysis
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2022-11-08

Three Projects Sql Server And Python Gui For Data Analysis written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-08 with Computers categories.


PROJECT 1: FULL SOURCE CODE: SQL SERVER FOR STUDENTS AND DATA SCIENTISTS WITH PYTHON GUI In this project, we provide you with the SQL SERVER version of SQLite sample database named chinook. The chinook sample database is a good database for practicing with SQL, especially PostgreSQL. The detailed description of the database can be found on: https://www.sqlitetutorial.net/sqlite-sample-database/. The sample database consists of 11 tables: The employee table stores employees data such as employee id, last name, first name, etc. It also has a field named ReportsTo to specify who reports to whom; customers table stores customers data; invoices & invoice_items tables: these two tables store invoice data. The invoice table stores invoice header data and the invoice_items table stores the invoice line items data; The artist table stores artists data. It is a simple table that contains only the artist id and name; The album table stores data about a list of tracks. Each album belongs to one artist. However, one artist may have multiple albums; The media_type table stores media types such as MPEG audio and AAC audio files; genre table stores music types such as rock, jazz, metal, etc; The track table stores the data of songs. Each track belongs to one album; playlist & playlist_track tables: The playlist table store data about playlists. Each playlist contains a list of tracks. Each track may belong to multiple playlists. The relationship between the playlist table and track table is many-to-many. The playlist_track table is used to reflect this relationship. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the bottom/top 10 sales by employee, the bottom/top 10 sales by customer, the bottom/top 10 sales by customer, the bottom/top 10 sales by artist, the bottom/top 10 sales by genre, the bottom/top 10 sales by play list, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the payment amount by month with mean and EWM, the average payment amount by every month, and amount payment in all years. PROJECT 2: FULL SOURCE CODE: SQL SERVER FOR DATA ANALYTICS AND VISUALIZATION WITH PYTHON GUI This book uses SQL SERVER version of MySQL-based Sakila sample database. It is a fictitious database designed to represent a DVD rental store. The tables of the database include film, film_category, actor, customer, rental, payment and inventory among others. The Sakila sample database is intended to provide a standard schema that can be used for examples in books, tutorials, articles, samples, and so forth. Detailed information about the database can be found on website: https://dev.mysql.com/doc/index-other.html. In this project, you will develop GUI using PyQt5 to: read SQL SERVER database and every table in it; read every actor in actor table, read every film in films table; plot case distribution of film release year, film rating, rental duration, and categorize film length; plot rating variable against rental_duration variable in stacked bar plots; plot length variable against rental_duration variable in stacked bar plots; read payment table; plot case distribution of Year, Day, Month, Week, and Quarter of payment; plot which year, month, week, days of week, and quarter have most payment amount; read film list by joining five tables: category, film_category, film_actor, film, and actor; plot case distribution of top 10 and bottom 10 actors; plot which film title have least and most sales; plot which actor have least and most sales; plot which film category have least and most sales; plot case distribution of top 10 and bottom 10 overdue customers; plot which customer have least and most overdue days; plot which store have most sales; plot average payment amount by month with mean and EWM; and plot payment amount over June 2005. PROJECT 3: ZERO TO MASTERY: THE COMPLETE GUIDE TO LEARNING SQL SERVER AND DATA SCIENCE WITH PYTHON GUI In this project, we provide you with a SQL SERVER version of an Oracle sample database named OT which is based on a global fictitious company that sells computer hardware including storage, motherboard, RAM, video card, and CPU. The company maintains the product information such as name, description standard cost, list price, and product line. It also tracks the inventory information for all products including warehouses where products are available. Because the company operates globally, it has warehouses in various locations around the world. The company records all customer information including name, address, and website. Each customer has at least one contact person with detailed information including name, email, and phone. The company also places a credit limit on each customer to limit the amount that customer can owe. Whenever a customer issues a purchase order, a sales order is created in the database with the pending status. When the company ships the order, the order status becomes shipped. In case the customer cancels an order, the order status becomes canceled. In addition to the sales information, the employee data is recorded with some basic information such as name, email, phone, job title, manager, and hire date. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by category, top 10 sales by category, bottom 10 sales by status, top 10 sales by status, bottom 10 sales by customer city, top 10 sales by customer city, bottom 10 sales by customer state, top 10 sales by customer state, average amount by month with mean and EWM, average amount by every month, amount feature over June 2016, amount feature over 2017, and amount payment in all years.



Brain Tumor Analysis Classification And Detection Using Machine Learning And Deep Learning With Python Gui


Brain Tumor Analysis Classification And Detection Using Machine Learning And Deep Learning With Python Gui
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2023-06-24

Brain Tumor Analysis Classification And Detection Using Machine Learning And Deep Learning With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-24 with Computers categories.


In this book, you will learn how to use Scikit-Learn, TensorFlow, Keras, NumPy, Pandas, Seaborn, and other libraries to implement brain tumor classification and detection with machine learning using Brain Tumor dataset provided by Kaggle. this dataset contains five first order features: Mean (the contribution of individual pixel intensity for the entire image), Variance (used to find how each pixel varies from the neighboring pixel 0, Standard Deviation (the deviation of measured Values or the data from its mean), Skewness (measures of symmetry), and Kurtosis (describes the peak of e.g. a frequency distribution). it also contains eight second order features: Contrast, Energy, ASM (Angular second moment), Entropy, Homogeneity, Dissimilarity, Correlation, and Coarseness. In this project, various methods and functionalities related to machine learning and deep learning are covered. Here is a summary of the process: Data Preprocessing: Loaded and preprocessed the dataset using various techniques such as feature scaling, encoding categorical variables, and splitting the dataset into training and testing sets.; Feature Selection: Implemented feature selection techniques such as SelectKBest, Recursive Feature Elimination, and Principal Component Analysis to select the most relevant features for the model.; Model Training and Evaluation: Trained and evaluated multiple machine learning models such as Random Forest, AdaBoost, Gradient Boosting, Logistic Regression, and Support Vector Machines using cross-validation and hyperparameter tuning. Implemented ensemble methods like Voting Classifier and Stacking Classifier to combine the predictions of multiple models. Calculated evaluation metrics such as accuracy, precision, recall, F1-score, and mean squared error for each model. Visualized the predictions and confusion matrix for the models using plotting techniques.; Deep Learning Model Building and Training: Built deep learning models using architectures such as MobileNet and ResNet50 for image classification tasks. Compiled and trained the models using appropriate loss functions, optimizers, and metrics. Saved the trained models and their training history for future use.; Visualization and Interaction: Implemented methods to plot the training loss and accuracy curves during model training. Created interactive widgets for displaying prediction results and confusion matrices. Linked the selection of prediction options in combo boxes to trigger the corresponding prediction and visualization functions.; Throughout the process, various libraries and frameworks such as scikit-learn, TensorFlow, and Keras are used to perform the tasks efficiently. The overall goal was to train models, evaluate their performance, visualize the results, and provide an interactive experience for the user to explore different prediction options.