Javascript For Data Science

DOWNLOAD
Download Javascript For Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Javascript For Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Javascript For Data Science
DOWNLOAD
Author : Maya Gans
language : en
Publisher: Chapman & Hall/CRC
Release Date : 2020
Javascript For Data Science written by Maya Gans and has been published by Chapman & Hall/CRC this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Information visualization categories.
"JavaScript is the language of the web. Originally developed for making browser-based interfaces more dynamic, it is now used for large-scale software projects of all kinds, including scientific visualization tools and data services. However, most researchers and data scientists have little or no experience with it. This book is designed to fill that void. It introduces readers to JavaScript's power and idiosyncrasies, and guides them through the key features of the modern version of the language and its tools and libraries. The book places equal focus on client- and server-side programming, and shows readers how to create interactive web content, build and test data services, and visualize data in the browser"--
Data Visualization With Python And Javascript
DOWNLOAD
Author : Kyran Dale
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-06-30
Data Visualization With Python And Javascript written by Kyran Dale and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06-30 with Computers categories.
Learn how to turn raw data into rich, interactive web visualizations with the powerful combination of Python and JavaScript. With this hands-on guide, author Kyran Dale teaches you how build a basic dataviz toolchain with best-of-breed Python and JavaScript libraries—including Scrapy, Matplotlib, Pandas, Flask, and D3—for crafting engaging, browser-based visualizations. As a working example, throughout the book Dale walks you through transforming Wikipedia’s table-based list of Nobel Prize winners into an interactive visualization. You’ll examine steps along the entire toolchain, from scraping, cleaning, exploring, and delivering data to building the visualization with JavaScript’s D3 library. If you’re ready to create your own web-based data visualizations—and know either Python or JavaScript— this is the book for you. Learn how to manipulate data with Python Understand the commonalities between Python and JavaScript Extract information from websites by using Python’s web-scraping tools, BeautifulSoup and Scrapy Clean and explore data with Python’s Pandas, Matplotlib, and Numpy libraries Serve data and create RESTful web APIs with Python’s Flask framework Create engaging, interactive web visualizations with JavaScript’s D3 library
Javascript For Data Science
DOWNLOAD
Author : Maya Gans
language : en
Publisher: CRC Press
Release Date : 2020-02-03
Javascript For Data Science written by Maya Gans and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-03 with Computers categories.
JavaScript is the native language of the Internet. Originally created to make web pages more dynamic, it is now used for software projects of all kinds, including scientific visualization and data services. However, most data scientists have little or no experience with JavaScript, and most introductions to the language are written for people who want to build shopping carts rather than share maps of coral reefs. This book will introduce you to JavaScript's power and idiosyncrasies and guide you through the key features of the language and its tools and libraries. The book places equal focus on client- and server-side programming, and shows readers how to create interactive web content, build and test data services, and visualize data in the browser. Topics include: The core features of modern JavaScript Creating templated web pages Making those pages interactive using React Data visualization using Vega-Lite Using Data-Forge to wrangle tabular data Building a data service with Express Unit testing with Mocha All of the material is covered by the Creative Commons Attribution-Noncommercial 4.0 International license (CC-BY-NC-4.0) and is included in the book's companion website. . Maya Gans is a freelance data scientist and front-end developer by way of quantitative biology. Toby Hodges is a bioinformatician turned community coordinator who works at the European Molecular Biology Laboratory. Greg Wilson co-founded Software Carpentry, and is now part of the education team at RStudio
Building Data Driven Applications With Danfo Js
DOWNLOAD
Author : Rising Odegua
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-09-24
Building Data Driven Applications With Danfo Js written by Rising Odegua and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-24 with Computers categories.
Get hands-on with building data-driven applications using Danfo.js in combination with other data analysis tools and techniques Key FeaturesBuild microservices to perform data transformation and ML model serving in JavaScriptExplore what Danfo.js is and how it helps with data analysis and data visualizationCombine Danfo.js and TensorFlow.js for machine learningBook Description Most data analysts use Python and pandas for data processing for the convenience and performance these libraries provide. However, JavaScript developers have always wanted to use machine learning in the browser as well. This book focuses on how Danfo.js brings data processing, analysis, and ML tools to JavaScript developers and how to make the most of this library to build data-driven applications. Starting with an overview of modern JavaScript, you'll cover data analysis and transformation with Danfo.js and Dnotebook. The book then shows you how to load different datasets, combine and analyze them by performing operations such as handling missing values and string manipulations. You'll also get to grips with data plotting, visualization, aggregation, and group operations by combining Danfo.js with Plotly. As you advance, you'll create a no-code data analysis and handling system and create-react-app, react-table, react-chart, Draggable.js, and tailwindcss, and understand how to use TensorFlow.js and Danfo.js to build a recommendation system. Finally, you'll build a Twitter analytics dashboard powered by Danfo.js, Next.js, node-nlp, and Twit.js. By the end of this app development book, you'll be able to build and embed data analytics, visualization, and ML capabilities into any JavaScript app in server-side Node.js or the browser. What you will learnPerform data experimentation and analysis with Danfo.js and DnotebookBuild machine learning applications using Danfo.js integrated with TensorFlow.jsConnect Danfo.js with popular database applications to aid data analysisCreate a no-code data analysis and handling system using internal librariesDevelop a recommendation system with Danfo.js and TensorFlow.jsBuild a Twitter analytics dashboard for sentiment analysis and other types of data insightsWho this book is for This book is for data analysts, data scientists, and JavaScript developers who want to create data-driven applications in the JavaScript/Node.js environment. Intermediate-level knowledge of JavaScript programming and data science using pandas is expected.
Practical Web Scraping For Data Science
DOWNLOAD
Author : Seppe vanden Broucke
language : en
Publisher: Apress
Release Date : 2018-04-18
Practical Web Scraping For Data Science written by Seppe vanden Broucke and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-18 with Computers categories.
This book provides a complete and modern guide to web scraping, using Python as the programming language, without glossing over important details or best practices. Written with a data science audience in mind, the book explores both scraping and the larger context of web technologies in which it operates, to ensure full understanding. The authors recommend web scraping as a powerful tool for any data scientist’s arsenal, as many data science projects start by obtaining an appropriate data set. Starting with a brief overview on scraping and real-life use cases, the authors explore the core concepts of HTTP, HTML, and CSS to provide a solid foundation. Along with a quick Python primer, they cover Selenium for JavaScript-heavy sites, and web crawling in detail. The book finishes with a recap of best practices and a collection of examples that bring together everything you've learned and illustrate various data science use cases. What You'll Learn Leverage well-established best practices and commonly-used Python packages Handle today's web, including JavaScript, cookies, and common web scraping mitigation techniques Understand the managerial and legal concerns regarding web scraping Who This Book is For A data science oriented audience that is probably already familiar with Python or another programming language or analytical toolkit (R, SAS, SPSS, etc). Students or instructors in university courses may also benefit. Readers unfamiliar with Python will appreciate a quick Python primer in chapter 1 to catch up with the basics and provide pointers to other guides as well.
Javascript For R
DOWNLOAD
Author : John Coene
language : en
Publisher: CRC Press
Release Date : 2021-07-15
Javascript For R written by John Coene and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-15 with Business & Economics categories.
Little known to many, R works just as well with JavaScript—this book delves into the various ways both languages can work together. The ultimate aim of this work is to put the reader at ease with inviting JavaScript in their data science workflow. In that respect the book is not teaching one JavaScript but rather we show how little JavaScript can greatly support and enhance R code. Therefore, the focus is on integrating external JavaScript libraries and no prior knowledge of JavaScript is required. Key Features: ● Easy to pick up. ● An entry way to learning JavaScript for R. ● Covers topics not covered anywhere else. ● Easy to follow along.
Introducing Data Science
DOWNLOAD
Author : Davy Cielen
language : en
Publisher: Simon and Schuster
Release Date : 2016-05-02
Introducing Data Science written by Davy Cielen and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-02 with Computers categories.
Summary Introducing Data Science teaches you how to accomplish the fundamental tasks that occupy data scientists. Using the Python language and common Python libraries, you'll experience firsthand the challenges of dealing with data at scale and gain a solid foundation in data science. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Many companies need developers with data science skills to work on projects ranging from social media marketing to machine learning. Discovering what you need to learn to begin a career as a data scientist can seem bewildering. This book is designed to help you get started. About the Book Introducing Data ScienceIntroducing Data Science explains vital data science concepts and teaches you how to accomplish the fundamental tasks that occupy data scientists. You’ll explore data visualization, graph databases, the use of NoSQL, and the data science process. You’ll use the Python language and common Python libraries as you experience firsthand the challenges of dealing with data at scale. Discover how Python allows you to gain insights from data sets so big that they need to be stored on multiple machines, or from data moving so quickly that no single machine can handle it. This book gives you hands-on experience with the most popular Python data science libraries, Scikit-learn and StatsModels. After reading this book, you’ll have the solid foundation you need to start a career in data science. What’s Inside Handling large data Introduction to machine learning Using Python to work with data Writing data science algorithms About the Reader This book assumes you're comfortable reading code in Python or a similar language, such as C, Ruby, or JavaScript. No prior experience with data science is required. About the Authors Davy Cielen, Arno D. B. Meysman, and Mohamed Ali are the founders and managing partners of Optimately and Maiton, where they focus on developing data science projects and solutions in various sectors. Table of Contents Data science in a big data world The data science process Machine learning Handling large data on a single computer First steps in big data Join the NoSQL movement The rise of graph databases Text mining and text analytics Data visualization to the end user
Think Like A Data Scientist
DOWNLOAD
Author : Brian Godsey
language : en
Publisher: Simon and Schuster
Release Date : 2017-03-09
Think Like A Data Scientist written by Brian Godsey and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-09 with Computers categories.
Summary Think Like a Data Scientist presents a step-by-step approach to data science, combining analytic, programming, and business perspectives into easy-to-digest techniques and thought processes for solving real world data-centric problems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Data collected from customers, scientific measurements, IoT sensors, and so on is valuable only if you understand it. Data scientists revel in the interesting and rewarding challenge of observing, exploring, analyzing, and interpreting this data. Getting started with data science means more than mastering analytic tools and techniques, however; the real magic happens when you begin to think like a data scientist. This book will get you there. About the Book Think Like a Data Scientist teaches you a step-by-step approach to solving real-world data-centric problems. By breaking down carefully crafted examples, you'll learn to combine analytic, programming, and business perspectives into a repeatable process for extracting real knowledge from data. As you read, you'll discover (or remember) valuable statistical techniques and explore powerful data science software. More importantly, you'll put this knowledge together using a structured process for data science. When you've finished, you'll have a strong foundation for a lifetime of data science learning and practice. What's Inside The data science process, step-by-step How to anticipate problems Dealing with uncertainty Best practices in software and scientific thinking About the Reader Readers need beginner programming skills and knowledge of basic statistics. About the Author Brian Godsey has worked in software, academia, finance, and defense and has launched several data-centric start-ups. Table of Contents PART 1 - PREPARING AND GATHERING DATA AND KNOWLEDGE Philosophies of data science Setting goals by asking good questions Data all around us: the virtual wilderness Data wrangling: from capture to domestication Data assessment: poking and prodding PART 2 - BUILDING A PRODUCT WITH SOFTWARE AND STATISTICS Developing a plan Statistics and modeling: concepts and foundations Software: statistics in action Supplementary software: bigger, faster, more efficient Plan execution: putting it all together PART 3 - FINISHING OFF THE PRODUCT AND WRAPPING UP Delivering a product After product delivery: problems and revisions Wrapping up: putting the project away
Data Structures And Algorithms With Javascript
DOWNLOAD
Author : Michael McMillan
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2014-03-10
Data Structures And Algorithms With Javascript written by Michael McMillan and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-03-10 with Computers categories.
As an experienced JavaScript developer moving to server-side programming, you need to implement classic data structures and algorithms associated with conventional object-oriented languages like C♯ and Java. This practical guide shows you how to work hands-on with a variety of storage mechanisms--including linked lists, stacks, queues, and graphs--within the constraints of the JavaScript environment. Determine which data structures and algorithms are most appropriate for the problems you're trying to solve, and understand the tradeoffs when using them in a JavaScript program. An overview of the JavaScript features used throughout the book is also included. This book covers: Arrays and lists: the most common data structures Stacks and queues: more complex list-like data structures Linked lists: how they overcome the shortcomings of arrays Dictionaries: storing data as key-value pairs Hashing: good for quick insertion and retrieval Sets: useful for storing unique elements that appear only once Binary Trees: storing data in a hierarchical manner Graphs and graph algorithms: ideal for modeling networks Algorithms: including those that help you sort or search data Advanced algorithms: dynamic programming and greedy algorithms.
Deep Learning With Javascript
DOWNLOAD
Author : Shanqing Cai
language : en
Publisher: Manning Publications
Release Date : 2019-10-07
Deep Learning With Javascript written by Shanqing Cai and has been published by Manning Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-07 with Computers categories.
Deep learning has transformed the fields of computer vision, image processing, and natural language applications. Thanks to TensorFlow.js, now JavaScript developers can build deep learning apps without relying on Python or R. Deep Learning with JavaScript shows developers how they can bring DL technology to the web. Written by the main authors of the TensorFlow library, this new book provides fascinating use cases and in-depth instruction for deep learning apps in JavaScript in your browser or on Node. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.