Kafka Streams Real Time Stream Processing

DOWNLOAD
Download Kafka Streams Real Time Stream Processing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Kafka Streams Real Time Stream Processing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Kafka Streams Real Time Stream Processing
DOWNLOAD
Author : Prashant Kumar Pandey
language : en
Publisher: Learning Journal
Release Date : 2019-03-26
Kafka Streams Real Time Stream Processing written by Prashant Kumar Pandey and has been published by Learning Journal this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-26 with Computers categories.
The book Kafka Streams - Real-time Stream Processing helps you understand the stream processing in general and apply that skill to Kafka streams programming. This book is focusing mainly on the new generation of the Kafka Streams library available in the Apache Kafka 2.x. The primary focus of this book is on Kafka Streams. However, the book also touches on the other Apache Kafka capabilities and concepts that are necessary to grasp the Kafka Streams programming. Who should read this book? Kafka Streams: Real-time Stream Processing is written for software engineers willing to develop a stream processing application using Kafka Streams library. I am also writing this book for data architects and data engineers who are responsible for designing and building the organization’s data-centric infrastructure. Another group of people is the managers and architects who do not directly work with Kafka implementation, but they work with the people who implement Kafka Streams at the ground level. What should you already know? This book assumes that the reader is familiar with the basics of Java programming language. The source code and examples in this book are using Java 8, and I will be using Java 8 lambda syntax, so experience with lambda will be helpful. Kafka Streams is a library that runs on Kafka. Having a good fundamental knowledge of Kafka is essential to get the most out of Kafka Streams. I will touch base on the mandatory Kafka concepts for those who are new to Kafka. The book also assumes that you have some familiarity and experience in running and working on the Linux operating system.
Mastering Kafka Streams And Ksqldb
DOWNLOAD
Author : Mitch Seymour
language : en
Publisher:
Release Date : 2021-04-13
Mastering Kafka Streams And Ksqldb written by Mitch Seymour and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-13 with categories.
Working with unbounded and fast-moving data streams has historically been difficult. But with Kafka Streams and ksqlDB, building stream processing applications is easy and fun. This practical guide explores the world of real-time data systems through the lens of these popular technologies and explains important stream processing concepts against a backdrop of interesting business problems. Mitch Seymour, senior data systems engineer at Mailchimp, introduces you to both Kafka Streams and ksqlDB so that you can choose the best tool for each unique stream processing project. Non-Java developers will find the ksqlDB path to be an especially gentle introduction to stream processing. In this book, you'll learn: Basic and advanced uses of Kafka Streams and ksqlDB How to transform, enrich, and process event streams How to build both stateless and stateful stream processing applications The different notions of time and the role it plays in stream processing How to to build event-driven microservices on top of continuous event streams Features, operational characteristics, deployment patterns, and configuration tips for both technologies
Kafka The Definitive Guide
DOWNLOAD
Author : Neha Narkhede
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-08-31
Kafka The Definitive Guide written by Neha Narkhede and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-31 with Computers categories.
Every enterprise application creates data, whether it’s log messages, metrics, user activity, outgoing messages, or something else. And how to move all of this data becomes nearly as important as the data itself. If you’re an application architect, developer, or production engineer new to Apache Kafka, this practical guide shows you how to use this open source streaming platform to handle real-time data feeds. Engineers from Confluent and LinkedIn who are responsible for developing Kafka explain how to deploy production Kafka clusters, write reliable event-driven microservices, and build scalable stream-processing applications with this platform. Through detailed examples, you’ll learn Kafka’s design principles, reliability guarantees, key APIs, and architecture details, including the replication protocol, the controller, and the storage layer. Understand publish-subscribe messaging and how it fits in the big data ecosystem. Explore Kafka producers and consumers for writing and reading messages Understand Kafka patterns and use-case requirements to ensure reliable data delivery Get best practices for building data pipelines and applications with Kafka Manage Kafka in production, and learn to perform monitoring, tuning, and maintenance tasks Learn the most critical metrics among Kafka’s operational measurements Explore how Kafka’s stream delivery capabilities make it a perfect source for stream processing systems
Building Data Streaming Applications With Apache Kafka
DOWNLOAD
Author : Manish Kumar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-08-18
Building Data Streaming Applications With Apache Kafka written by Manish Kumar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-18 with Computers categories.
Design and administer fast, reliable enterprise messaging systems with Apache Kafka About This Book Build efficient real-time streaming applications in Apache Kafka to process data streams of data Master the core Kafka APIs to set up Apache Kafka clusters and start writing message producers and consumers A comprehensive guide to help you get a solid grasp of the Apache Kafka concepts in Apache Kafka with pracitcalpractical examples Who This Book Is For If you want to learn how to use Apache Kafka and the different tools in the Kafka ecosystem in the easiest possible manner, this book is for you. Some programming experience with Java is required to get the most out of this book What You Will Learn Learn the basics of Apache Kafka from scratch Use the basic building blocks of a streaming application Design effective streaming applications with Kafka using Spark, Storm &, and Heron Understand the importance of a low -latency , high- throughput, and fault-tolerant messaging system Make effective capacity planning while deploying your Kafka Application Understand and implement the best security practices In Detail Apache Kafka is a popular distributed streaming platform that acts as a messaging queue or an enterprise messaging system. It lets you publish and subscribe to a stream of records, and process them in a fault-tolerant way as they occur. This book is a comprehensive guide to designing and architecting enterprise-grade streaming applications using Apache Kafka and other big data tools. It includes best practices for building such applications, and tackles some common challenges such as how to use Kafka efficiently and handle high data volumes with ease. This book first takes you through understanding the type messaging system and then provides a thorough introduction to Apache Kafka and its internal details. The second part of the book takes you through designing streaming application using various frameworks and tools such as Apache Spark, Apache Storm, and more. Once you grasp the basics, we will take you through more advanced concepts in Apache Kafka such as capacity planning and security. By the end of this book, you will have all the information you need to be comfortable with using Apache Kafka, and to design efficient streaming data applications with it. Style and approach A step-by –step, comprehensive guide filled with practical and real- world examples
Streaming Systems
DOWNLOAD
Author : Tyler Akidau
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-07-16
Streaming Systems written by Tyler Akidau and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-16 with Computers categories.
Streaming data is a big deal in big data these days. As more and more businesses seek to tame the massive unbounded data sets that pervade our world, streaming systems have finally reached a level of maturity sufficient for mainstream adoption. With this practical guide, data engineers, data scientists, and developers will learn how to work with streaming data in a conceptual and platform-agnostic way. Expanded from Tyler Akidau’s popular blog posts "Streaming 101" and "Streaming 102", this book takes you from an introductory level to a nuanced understanding of the what, where, when, and how of processing real-time data streams. You’ll also dive deep into watermarks and exactly-once processing with co-authors Slava Chernyak and Reuven Lax. You’ll explore: How streaming and batch data processing patterns compare The core principles and concepts behind robust out-of-order data processing How watermarks track progress and completeness in infinite datasets How exactly-once data processing techniques ensure correctness How the concepts of streams and tables form the foundations of both batch and streaming data processing The practical motivations behind a powerful persistent state mechanism, driven by a real-world example How time-varying relations provide a link between stream processing and the world of SQL and relational algebra
I Heart Logs
DOWNLOAD
Author : Jay Kreps
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2014-09-23
I Heart Logs written by Jay Kreps and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-23 with Computers categories.
Why a book about logs? That’s easy: the humble log is an abstraction that lies at the heart of many systems, from NoSQL databases to cryptocurrencies. Even though most engineers don’t think much about them, this short book shows you why logs are worthy of your attention. Based on his popular blog posts, LinkedIn principal engineer Jay Kreps shows you how logs work in distributed systems, and then delivers practical applications of these concepts in a variety of common uses—data integration, enterprise architecture, real-time stream processing, data system design, and abstract computing models. Go ahead and take the plunge with logs; you’re going love them. Learn how logs are used for programmatic access in databases and distributed systems Discover solutions to the huge data integration problem when more data of more varieties meet more systems Understand why logs are at the heart of real-time stream processing Learn the role of a log in the internals of online data systems Explore how Jay Kreps applies these ideas to his own work on data infrastructure systems at LinkedIn
Stream Processing With Apache Spark
DOWNLOAD
Author : Gerard Maas
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-06-05
Stream Processing With Apache Spark written by Gerard Maas and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-05 with Computers categories.
Before you can build analytics tools to gain quick insights, you first need to know how to process data in real time. With this practical guide, developers familiar with Apache Spark will learn how to put this in-memory framework to use for streaming data. You’ll discover how Spark enables you to write streaming jobs in almost the same way you write batch jobs. Authors Gerard Maas and François Garillot help you explore the theoretical underpinnings of Apache Spark. This comprehensive guide features two sections that compare and contrast the streaming APIs Spark now supports: the original Spark Streaming library and the newer Structured Streaming API. Learn fundamental stream processing concepts and examine different streaming architectures Explore Structured Streaming through practical examples; learn different aspects of stream processing in detail Create and operate streaming jobs and applications with Spark Streaming; integrate Spark Streaming with other Spark APIs Learn advanced Spark Streaming techniques, including approximation algorithms and machine learning algorithms Compare Apache Spark to other stream processing projects, including Apache Storm, Apache Flink, and Apache Kafka Streams
Streaming Architecture
DOWNLOAD
Author : Ted Dunning
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-05-10
Streaming Architecture written by Ted Dunning and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-10 with Computers categories.
More and more data-driven companies are looking to adopt stream processing and streaming analytics. With this concise ebook, you’ll learn best practices for designing a reliable architecture that supports this emerging big-data paradigm. Authors Ted Dunning and Ellen Friedman (Real World Hadoop) help you explore some of the best technologies to handle stream processing and analytics, with a focus on the upstream queuing or message-passing layer. To illustrate the effectiveness of these technologies, this book also includes specific use cases. Ideal for developers and non-technical people alike, this book describes: Key elements in good design for streaming analytics, focusing on the essential characteristics of the messaging layer New messaging technologies, including Apache Kafka and MapR Streams, with links to sample code Technology choices for streaming analytics: Apache Spark Streaming, Apache Flink, Apache Storm, and Apache Apex How stream-based architectures are helpful to support microservices Specific use cases such as fraud detection and geo-distributed data streams Ted Dunning is Chief Applications Architect at MapR Technologies, and active in the open source community. He currently serves as VP for Incubator at the Apache Foundation, as a champion and mentor for a large number of projects, and as committer and PMC member of the Apache ZooKeeper and Drill projects. Ted is on Twitter as @ted_dunning. Ellen Friedman, a committer for the Apache Drill and Apache Mahout projects, is a solutions consultant and well-known speaker and author, currently writing mainly about big data topics. With a PhD in Biochemistry, she has years of experience as a research scientist and has written about a variety of technical topics. Ellen is on Twitter as @Ellen_Friedman.
Stream Processing With Apache Flink
DOWNLOAD
Author : Fabian Hueske
language : en
Publisher:
Release Date : 2019
Stream Processing With Apache Flink written by Fabian Hueske and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Apache Flink categories.
Annotation Get started with Apache Flink, the open source framework that enables you to process streaming data - such as user interactions, sensor data, and machine logs - as it arrives. With this practical guide, you'll learn how to use Apache Flink's stream processing APIs to implement, continuously run, and maintain real-world applications. Authors Fabian Hueske, one of Flink's creators, and Vasia Kalavri, a core contributor to Flink's graph processing API (Gelly), explain the fundamental concepts of parallel stream processing and show you how streaming analytics differs from traditional batch data analysis.
Event Streams In Action
DOWNLOAD
Author : Valentin Crettaz
language : en
Publisher: Simon and Schuster
Release Date : 2019-05-10
Event Streams In Action written by Valentin Crettaz and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-10 with Computers categories.
Summary Event Streams in Action is a foundational book introducing the ULP paradigm and presenting techniques to use it effectively in data-rich environments. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Many high-profile applications, like LinkedIn and Netflix, deliver nimble, responsive performance by reacting to user and system events as they occur. In large-scale systems, this requires efficiently monitoring, managing, and reacting to multiple event streams. Tools like Kafka, along with innovative patterns like unified log processing, help create a coherent data processing architecture for event-based applications. About the Book Event Streams in Action teaches you techniques for aggregating, storing, and processing event streams using the unified log processing pattern. In this hands-on guide, you'll discover important application designs like the lambda architecture, stream aggregation, and event reprocessing. You'll also explore scaling, resiliency, advanced stream patterns, and much more! By the time you're finished, you'll be designing large-scale data-driven applications that are easier to build, deploy, and maintain. What's inside Validating and monitoring event streams Event analytics Methods for event modeling Examples using Apache Kafka and Amazon Kinesis About the Reader For readers with experience coding in Java, Scala, or Python. About the Author Alexander Dean developed Snowplow, an open source event processing and analytics platform. Valentin Crettaz is an independent IT consultant with 25 years of experience. Table of Contents PART 1 - EVENT STREAMS AND UNIFIED LOGS Introducing event streams The unified log 24 Event stream processing with Apache Kafka Event stream processing with Amazon Kinesis Stateful stream processing PART 2- DATA ENGINEERING WITH STREAMS Schemas Archiving events Railway-oriented processing Commands PART 3 - EVENT ANALYTICS Analytics-on-read Analytics-on-write