Knots And Links In Three Dimensional Flows

DOWNLOAD
Download Knots And Links In Three Dimensional Flows PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Knots And Links In Three Dimensional Flows book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Knots And Links In Three Dimensional Flows
DOWNLOAD
Author : Robert W. Ghrist
language : en
Publisher: Springer
Release Date : 2006-11-14
Knots And Links In Three Dimensional Flows written by Robert W. Ghrist and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-14 with Mathematics categories.
The closed orbits of three-dimensional flows form knots and links. This book develops the tools - template theory and symbolic dynamics - needed for studying knotted orbits. This theory is applied to the problems of understanding local and global bifurcations, as well as the embedding data of orbits in Morse-smale, Smale, and integrable Hamiltonian flows. The necesssary background theory is sketched; however, some familiarity with low-dimensional topology and differential equations is assumed.
Knots And Links In Three Dimensional Flows
DOWNLOAD
Author : Robert W. Ghrist
language : en
Publisher:
Release Date : 2014-09-01
Knots And Links In Three Dimensional Flows written by Robert W. Ghrist and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-09-01 with categories.
The Topology Of Chaos
DOWNLOAD
Author : Robert Gilmore
language : en
Publisher: John Wiley & Sons
Release Date : 2012-04-30
The Topology Of Chaos written by Robert Gilmore and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-04-30 with Mathematics categories.
A highly valued resource for those who wish to move from the introductory and preliminary understandings and the measurement of chaotic behavior to a more sophisticated and precise understanding of chaotic systems. The authors provide a deep understanding of the structure of strange attractors, how they are classified, and how the information required to identify and classify a strange attractor can be extracted from experimental data. In its first edition, the Topology of Chaos has been a valuable resource for physicist and mathematicians interested in the topological analysis of dynamical systems. Since its publication in 2002, important theoretical and experimental advances have put the topological analysis program on a firmer basis. This second edition includes relevant results and connects the material to other recent developments. Following significant improvements will be included: * A gentler introduction to the topological analysis of chaotic systems for the non expert which introduces the problems and questions that one commonly encounters when observing a chaotic dynamics and which are well addressed by a topological approach: existence of unstable periodic orbits, bifurcation sequences, multistability etc. * A new chapter is devoted to bounding tori which are essential for achieving generality as well as for understanding the influence of boundary conditions. * The new edition also reflects the progress which had been made towards extending topological analysis to higher-dimensional systems by proposing a new formalism where evolving triangulations replace braids. * There has also been much progress in the understanding of what is a good representation of a chaotic system, and therefore a new chapter is devoted to embeddings. * The chapter on topological analysis program will be expanded to cover traditional measures of chaos. This will help to connect those readers who are familiar with those measures and tests to the more sophisticated methodologies discussed in detail in this book. * The addition of the Appendix with both frequently asked and open questions with answers gathers the most essential points readers should keep in mind and guides to corresponding sections in the book. This will be of great help to those who want to selectively dive into the book and its treatments rather than reading it cover to cover. What makes this book special is its attempt to classify real physical systems (e.g. lasers) using topological techniques applied to real date (e.g. time series). Hence it has become the experimenter?s guidebook to reliable and sophisticated studies of experimental data for comparison with candidate relevant theoretical models, inevitable to physicists, mathematicians, and engineers studying low-dimensional chaotic systems.
Knots In Hellas 98
DOWNLOAD
Author : C. McA. Gordon
language : en
Publisher: World Scientific
Release Date : 2000
Knots In Hellas 98 written by C. McA. Gordon and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Mathematics categories.
There have been exciting developments in the area of knot theory in recent years. They include Thurston's work on geometric structures on 3-manifolds (e.g. knot complements), Gordon?Luecke work on surgeries on knots, Jones' work on invariants of links in S3, and advances in the theory of invariants of 3-manifolds based on Jones- and Vassiliev-type invariants of links. Jones ideas and Thurston's idea are connected by the following path: hyperbolic structures, PSL(2, C) representations, character varieties, quantization of the coordinate ring of the variety to skein modules (i.e. Kauffman, bracket skein module), and finally quantum invariants of 3-manifolds. This proceedings volume covers all those exciting topics.
Handbook Of Dynamical Systems
DOWNLOAD
Author : H. Broer
language : en
Publisher: Elsevier
Release Date : 2010-11-10
Handbook Of Dynamical Systems written by H. Broer and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-10 with Mathematics categories.
In this volume, the authors present a collection of surveys on various aspects of the theory of bifurcations of differentiable dynamical systems and related topics. By selecting these subjects, they focus on those developments from which research will be active in the coming years. The surveys are intended to educate the reader on the recent literature on the following subjects: transversality and generic properties like the various forms of the so-called Kupka-Smale theorem, the Closing Lemma and generic local bifurcations of functions (so-called catastrophe theory) and generic local bifurcations in 1-parameter families of dynamical systems, and notions of structural stability and moduli. - Covers recent literature on various topics related to the theory of bifurcations of differentiable dynamical systems - Highlights developments that are the foundation for future research in this field - Provides material in the form of surveys, which are important tools for introducing the bifurcations of differentiable dynamical systems
The User S Approach To Topological Methods In 3d Dynamical Systems
DOWNLOAD
Author : Mario A. Natiello
language : en
Publisher: World Scientific
Release Date : 2007
The User S Approach To Topological Methods In 3d Dynamical Systems written by Mario A. Natiello and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Mathematics categories.
This book presents the development and application of some topological methods in the analysis of data coming from 3D dynamical systems (or related objects). The aim is to emphasize the scope and limitations of the methods, what they provide and what they do not provide. Braid theory, the topology of surface homeomorphisms, data analysis and the reconstruction of phase-space dynamics are thoroughly addressed.
The User S Approach For Topological Methods In 3d Dynamical Systems
DOWNLOAD
Author : Mario A Natiello
language : en
Publisher: World Scientific
Release Date : 2007-06-15
The User S Approach For Topological Methods In 3d Dynamical Systems written by Mario A Natiello and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-06-15 with Mathematics categories.
This book presents the development and application of some topological methods in the analysis of data coming from 3D dynamical systems (or related objects). The aim is to emphasize the scope and limitations of the methods, what they provide and what they do not provide. Braid theory, the topology of surface homeomorphisms, data analysis and the reconstruction of phase-space dynamics are thoroughly addressed.
Dynamical Systems
DOWNLOAD
Author : Zeraoulia Elhadj
language : en
Publisher: CRC Press
Release Date : 2019-01-21
Dynamical Systems written by Zeraoulia Elhadj and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-21 with Mathematics categories.
Chaos is the idea that a system will produce very different long-term behaviors when the initial conditions are perturbed only slightly. Chaos is used for novel, time- or energy-critical interdisciplinary applications. Examples include high-performance circuits and devices, liquid mixing, chemical reactions, biological systems, crisis management, secure information processing, and critical decision-making in politics, economics, as well as military applications, etc. This book presents the latest investigations in the theory of chaotic systems and their dynamics. The book covers some theoretical aspects of the subject arising in the study of both discrete and continuous-time chaotic dynamical systems. This book presents the state-of-the-art of the more advanced studies of chaotic dynamical systems.
Numerical Continuation Methods For Dynamical Systems
DOWNLOAD
Author : Bernd Krauskopf
language : en
Publisher: Springer
Release Date : 2007-11-06
Numerical Continuation Methods For Dynamical Systems written by Bernd Krauskopf and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-11-06 with Science categories.
Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel's 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects and showcase examples of how numerical bifurcation analysis can be used in concrete applications. Topics that are treated include: interactive continuation tools, higher-dimensional continuation, the computation of invariant manifolds, and continuation techniques for slow-fast systems, for symmetric Hamiltonian systems, for spatially extended systems and for systems with delay. Three chapters review physical applications: the dynamics of a SQUID, global bifurcations in laser systems, and dynamics and bifurcations in electronic circuits.
Introduction To Applied Nonlinear Dynamical Systems And Chaos
DOWNLOAD
Author : Stephen Wiggins
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-04-18
Introduction To Applied Nonlinear Dynamical Systems And Chaos written by Stephen Wiggins and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-18 with Mathematics categories.
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in - search and teaching, has led to the establishment of the series Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as nume- cal and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and to encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mat- matical Sciences (AMS) series, whichwill focus on advanced textbooks and research-level monographs. Pasadena, California J.E. Marsden Providence, Rhode Island L. Sirovich College Park, Maryland S.S. Antman Preface to the Second Edition This edition contains a signi?cant amount of new material. The main r- son for this is that the subject of applied dynamical systems theory has seen explosive growth and expansion throughout the 1990s. Consequently, a student needs a much larger toolbox today in order to begin research on signi?cant problems.