[PDF] Knots Low Dimensional Topology And Applications - eBooks Review

Knots Low Dimensional Topology And Applications


Knots Low Dimensional Topology And Applications
DOWNLOAD

Download Knots Low Dimensional Topology And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Knots Low Dimensional Topology And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Knots Low Dimensional Topology And Applications


Knots Low Dimensional Topology And Applications
DOWNLOAD
Author : Colin C. Adams
language : en
Publisher: Springer
Release Date : 2019-06-26

Knots Low Dimensional Topology And Applications written by Colin C. Adams and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-26 with Mathematics categories.


This proceedings volume presents a diverse collection of high-quality, state-of-the-art research and survey articles written by top experts in low-dimensional topology and its applications. The focal topics include the wide range of historical and contemporary invariants of knots and links and related topics such as three- and four-dimensional manifolds, braids, virtual knot theory, quantum invariants, braids, skein modules and knot algebras, link homology, quandles and their homology; hyperbolic knots and geometric structures of three-dimensional manifolds; the mechanism of topological surgery in physical processes, knots in Nature in the sense of physical knots with applications to polymers, DNA enzyme mechanisms, and protein structure and function. The contents is based on contributions presented at the International Conference on Knots, Low-Dimensional Topology and Applications – Knots in Hellas 2016, which was held at the International Olympic Academy in Greece in July 2016. The goal of the international conference was to promote the exchange of methods and ideas across disciplines and generations, from graduate students to senior researchers, and to explore fundamental research problems in the broad fields of knot theory and low-dimensional topology. This book will benefit all researchers who wish to take their research in new directions, to learn about new tools and methods, and to discover relevant and recent literature for future study.



Intelligence Of Low Dimensional Topology 2006


Intelligence Of Low Dimensional Topology 2006
DOWNLOAD
Author : J Scott Carter
language : en
Publisher: World Scientific
Release Date : 2007-05-29

Intelligence Of Low Dimensional Topology 2006 written by J Scott Carter and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-05-29 with Mathematics categories.


This volume gathers the contributions from the international conference “Intelligence of Low Dimensional Topology 2006,” which took place in Hiroshima in 2006. The aim of this volume is to promote research in low dimensional topology with the focus on knot theory and related topics. The papers include comprehensive reviews and some latest results.



The Mathematics Of Knots


The Mathematics Of Knots
DOWNLOAD
Author : Markus Banagl
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-11-25

The Mathematics Of Knots written by Markus Banagl and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-25 with Mathematics categories.


The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested in the topology of DNA strands.



Handbook Of Knot Theory


Handbook Of Knot Theory
DOWNLOAD
Author : William Menasco
language : en
Publisher: Elsevier
Release Date : 2005-08-02

Handbook Of Knot Theory written by William Menasco and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-08-02 with Mathematics categories.


This book is a survey of current topics in the mathematical theory of knots. For a mathematician, a knot is a closed loop in 3-dimensional space: imagine knotting an extension cord and then closing it up by inserting its plug into its outlet. Knot theory is of central importance in pure and applied mathematics, as it stands at a crossroads of topology, combinatorics, algebra, mathematical physics and biochemistry. * Survey of mathematical knot theory * Articles by leading world authorities * Clear exposition, not over-technical * Accessible to readers with undergraduate background in mathematics



Quandles And Topological Pairs


Quandles And Topological Pairs
DOWNLOAD
Author : Takefumi Nosaka
language : en
Publisher: Springer
Release Date : 2017-11-20

Quandles And Topological Pairs written by Takefumi Nosaka and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-20 with Mathematics categories.


This book surveys quandle theory, starting from basic motivations and going on to introduce recent developments of quandles with topological applications and related topics. The book is written from topological aspects, but it illustrates how esteemed quandle theory is in mathematics, and it constitutes a crash course for studying quandles.More precisely, this work emphasizes the fresh perspective that quandle theory can be useful for the study of low-dimensional topology (e.g., knot theory) and relative objects with symmetry. The direction of research is summarized as “We shall thoroughly (re)interpret the previous studies of relative symmetry in terms of the quandle”. The perspectives contained herein can be summarized by the following topics. The first is on relative objects G/H, where G and H are groups, e.g., polyhedrons, reflection, and symmetric spaces. Next, central extensions of groups are discussed, e.g., spin structures, K2 groups, and some geometric anomalies. The third topic is a method to study relative information on a 3-dimensional manifold with a boundary, e.g., knot theory, relative cup products, and relative group cohomology.For applications in topology, it is shown that from the perspective that some existing results in topology can be recovered from some quandles, a method is provided to diagrammatically compute some “relative homology”. (Such classes since have been considered to be uncomputable and speculative). Furthermore, the book provides a perspective that unifies some previous studies of quandles.The former part of the book explains motivations for studying quandles and discusses basic properties of quandles. The latter focuses on low-dimensional topology or knot theory. Finally, problems and possibilities for future developments of quandle theory are posed.



Knots And Applications


Knots And Applications
DOWNLOAD
Author : Thaddeus M Cowan
language : en
Publisher: World Scientific
Release Date : 1995-03-06

Knots And Applications written by Thaddeus M Cowan and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995-03-06 with categories.


This volume is a collection of research papers devoted to the study of relationships between knot theory and the foundations of mathematics, physics, chemistry, biology and psychology. Included are reprints of the work of Lord Kelvin (Sir William Thomson) on the 19th century theory of vortex atoms, reprints of modern papers on knotted flux in physics and in fluid dynamics and knotted wormholes in general relativity. It also includes papers on Witten's approach to knots via quantum field theory and applications of this approach to quantum gravity and the Ising model in three dimensions. Other papers discuss the topology of RNA folding in relation to invariants of graphs and Vassiliev invariants, the entanglement structures of polymers, the synthesis of molecular Mobius strips and knotted molecules. The book begins with an article on the applications of knot theory to the foundations of mathematics and ends with an article on topology and visual perception. This volume will be of immense interest to all workers interested in new possibilities in the uses of knots and knot theory.



Encyclopedia Of Knot Theory


Encyclopedia Of Knot Theory
DOWNLOAD
Author : Colin Adams
language : en
Publisher: CRC Press
Release Date : 2021-02-10

Encyclopedia Of Knot Theory written by Colin Adams and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-10 with Mathematics categories.


"Knot theory is a fascinating mathematical subject, with multiple links to theoretical physics. This enyclopedia is filled with valuable information on a rich and fascinating subject." – Ed Witten, Recipient of the Fields Medal "I spent a pleasant afternoon perusing the Encyclopedia of Knot Theory. It’s a comprehensive compilation of clear introductions to both classical and very modern developments in the field. It will be a terrific resource for the accomplished researcher, and will also be an excellent way to lure students, both graduate and undergraduate, into the field." – Abigail Thompson, Distinguished Professor of Mathematics at University of California, Davis Knot theory has proven to be a fascinating area of mathematical research, dating back about 150 years. Encyclopedia of Knot Theory provides short, interconnected articles on a variety of active areas in knot theory, and includes beautiful pictures, deep mathematical connections, and critical applications. Many of the articles in this book are accessible to undergraduates who are working on research or taking an advanced undergraduate course in knot theory. More advanced articles will be useful to graduate students working on a related thesis topic, to researchers in another area of topology who are interested in current results in knot theory, and to scientists who study the topology and geometry of biopolymers. Features Provides material that is useful and accessible to undergraduates, postgraduates, and full-time researchers Topics discussed provide an excellent catalyst for students to explore meaningful research and gain confidence and commitment to pursuing advanced degrees Edited and contributed by top researchers in the field of knot theory



Functorial Knot Theory


Functorial Knot Theory
DOWNLOAD
Author : David N. Yetter
language : en
Publisher: World Scientific
Release Date : 2001

Functorial Knot Theory written by David N. Yetter and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.


Almost since the advent of skein-theoretic invariants of knots and links (the Jones, HOMFLY, and Kauffman polynomials), the important role of categories of tangles in the connection between low-dimensional topology and quantum-group theory has been recognized. The rich categorical structures naturally arising from the considerations of cobordisms have suggested functorial views of topological field theory.This book begins with a detailed exposition of the key ideas in the discovery of monoidal categories of tangles as central objects of study in low-dimensional topology. The focus then turns to the deformation theory of monoidal categories and the related deformation theory of monoidal functors, which is a proper generalization of Gerstenhaber's deformation theory of associative algebras. These serve as the building blocks for a deformation theory of braided monoidal categories which gives rise to sequences of Vassiliev invariants of framed links, and clarify their interrelations.



Knots And Primes


Knots And Primes
DOWNLOAD
Author : Masanori Morishita
language : en
Publisher: Springer
Release Date : 2024-02-28

Knots And Primes written by Masanori Morishita and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-02-28 with Mathematics categories.


This book provides a foundation for arithmetic topology, a new branch of mathematics that investigates the analogies between the topology of knots, 3-manifolds, and the arithmetic of number fields. Arithmetic topology is now becoming a powerful guiding principle and driving force to obtain parallel results and new insights between 3-dimensional geometry and number theory. After an informative introduction to Gauss' work, in which arithmetic topology originated, the text reviews a background from both topology and number theory. The analogy between knots in 3-manifolds and primes in number rings, the founding principle of the subject, is based on the étale topological interpretation of primes and number rings. On the basis of this principle, the text explores systematically intimate analogies and parallel results of various concepts and theories between 3-dimensional topology and number theory. The presentation of these analogies begins at an elementary level, gradually building to advanced theories in later chapters. Many results presented here are new and original. References are clearly provided if necessary, and many examples and illustrations are included. Some useful problems are also given for future research. All these components make the book useful for graduate students and researchers in number theory, low dimensional topology, and geometry. This second edition is a corrected and enlarged version of the original one. Misprints and mistakes in the first edition are corrected, references are updated, and some expositions are improved. Because of the remarkable developments in arithmetic topology after the publication of the first edition, the present edition includes two new chapters. One is concerned with idelic class field theory for 3-manifolds and number fields. The other deals with topological and arithmetic Dijkgraaf–Witten theory, which supports a new bridge between arithmetic topology and mathematical physics.



Introductory Lectures On Knot Theory


Introductory Lectures On Knot Theory
DOWNLOAD
Author : Louis H. Kauffman
language : en
Publisher: World Scientific
Release Date : 2012

Introductory Lectures On Knot Theory written by Louis H. Kauffman and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.


More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.