[PDF] Knowledge Discovery From Data Streams - eBooks Review

Knowledge Discovery From Data Streams


Knowledge Discovery From Data Streams
DOWNLOAD

Download Knowledge Discovery From Data Streams PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Knowledge Discovery From Data Streams book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Knowledge Discovery From Data Streams


Knowledge Discovery From Data Streams
DOWNLOAD
Author : Joao Gama
language : en
Publisher: CRC Press
Release Date : 2010-05-25

Knowledge Discovery From Data Streams written by Joao Gama and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-05-25 with Business & Economics categories.


Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents a coherent overview of state-of-the-art research in learning from data streams. The book covers the fundamentals that are imperative to understanding data streams and describes important applications, such as TCP/IP traffic, GPS data, sensor networks, and customer click streams. It also addresses several challenges of data mining in the future, when stream mining will be at the core of many applications. These challenges involve designing useful and efficient data mining solutions applicable to real-world problems. In the appendix, the author includes examples of publicly available software and online data sets. This practical, up-to-date book focuses on the new requirements of the next generation of data mining. Although the concepts presented in the text are mainly about data streams, they also are valid for different areas of machine learning and data mining.



Data Streams


Data Streams
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-04-03

Data Streams written by Charu C. Aggarwal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-04-03 with Computers categories.


This book primarily discusses issues related to the mining aspects of data streams and it is unique in its primary focus on the subject. This volume covers mining aspects of data streams comprehensively: each contributed chapter contains a survey on the topic, the key ideas in the field for that particular topic, and future research directions. The book is intended for a professional audience composed of researchers and practitioners in industry. This book is also appropriate for advanced-level students in computer science.



Data Streams


Data Streams
DOWNLOAD
Author : S. Muthukrishnan
language : en
Publisher: Now Publishers Inc
Release Date : 2005

Data Streams written by S. Muthukrishnan and has been published by Now Publishers Inc this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Computers categories.


In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerged for reasoning about algorithms that work within these constraints on space, time, and number of passes. Some of the methods rely on metric embeddings, pseudo-random computations, sparse approximation theory and communication complexity. The applications for this scenario include IP network traffic analysis, mining text message streams and processing massive data sets in general. Researchers in Theoretical Computer Science, Databases, IP Networking and Computer Systems are working on the data stream challenges.



Web Semantics For Textual And Visual Information Retrieval


Web Semantics For Textual And Visual Information Retrieval
DOWNLOAD
Author : Aarti Singh
language : en
Publisher: Information Science Reference
Release Date : 2017-02-10

Web Semantics For Textual And Visual Information Retrieval written by Aarti Singh and has been published by Information Science Reference this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-10 with Computers categories.


Modern society exists in a digital era in which high volumes of multimedia information exists. To optimize the management of this data, new methods are emerging for more efficient information retrieval. Web Semantics for Textual and Visual Information Retrieval is a pivotal reference source for the latest academic research on embedding and associating semantics with multimedia information to improve data retrieval techniques. Highlighting a range of pertinent topics such as automation, knowledge discovery, and social networking, this book is ideally designed for researchers, practitioners, students, and professionals interested in emerging trends in information retrieval.



Learning From Data Streams


Learning From Data Streams
DOWNLOAD
Author : João Gama
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-09-20

Learning From Data Streams written by João Gama and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-09-20 with Computers categories.


Sensor networks consist of distributed autonomous devices that cooperatively monitor an environment. Sensors are equipped with capacities to store information in memory, process this information and communicate with their neighbors. Processing data streams generated from wireless sensor networks has raised new research challenges over the last few years due to the huge numbers of data streams to be managed continuously and at a very high rate. The book provides the reader with a comprehensive overview of stream data processing, including famous prototype implementations like the Nile system and the TinyOS operating system. The set of chapters covers the state-of-art in data stream mining approaches using clustering, predictive learning, and tensor analysis techniques, and applying them to applications in security, the natural sciences, and education. This research monograph delivers to researchers and graduate students the state of the art in data stream processing in sensor networks. The huge bibliography offers an excellent starting point for further reading and future research.



Knowledge Discovery From Sensor Data


Knowledge Discovery From Sensor Data
DOWNLOAD
Author : Auroop R. Ganguly
language : en
Publisher: CRC Press
Release Date : 2008-12-10

Knowledge Discovery From Sensor Data written by Auroop R. Ganguly and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-10 with Business & Economics categories.


As sensors become ubiquitous, a set of broad requirements is beginning to emerge across high-priority applications including disaster preparedness and management, adaptability to climate change, national or homeland security, and the management of critical infrastructures. This book presents innovative solutions in offline data mining and real-time



Knowledge Discovery From Data Streams


Knowledge Discovery From Data Streams
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2007

Knowledge Discovery From Data Streams written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with categories.




Urban Informatics


Urban Informatics
DOWNLOAD
Author : Wenzhong Shi
language : en
Publisher: Springer Nature
Release Date : 2021-04-06

Urban Informatics written by Wenzhong Shi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-06 with Social Science categories.


This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity.



Machine Learning For Data Streams


Machine Learning For Data Streams
DOWNLOAD
Author : Albert Bifet
language : en
Publisher: MIT Press
Release Date : 2018-03-16

Machine Learning For Data Streams written by Albert Bifet and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-16 with Computers categories.


A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework. Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations. The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.