Knowledge Recommendation Systems With Machine Intelligence Algorithms

DOWNLOAD
Download Knowledge Recommendation Systems With Machine Intelligence Algorithms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Knowledge Recommendation Systems With Machine Intelligence Algorithms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Knowledge Recommendation Systems With Machine Intelligence Algorithms
DOWNLOAD
Author : Jarosław Protasiewicz
language : en
Publisher: Springer Nature
Release Date : 2023-09-30
Knowledge Recommendation Systems With Machine Intelligence Algorithms written by Jarosław Protasiewicz and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-30 with Computers categories.
Knowledge recommendation is an timely subject that is encountered frequently in research and information services. A compelling and urgent need exists for such systems: the modern economy is in dire need of highly-skilled professionals, researchers, and innovators, who create opportunities to gain competitive advantage and assist in the management of financial resources and available goods, as well as conducting fundamental and applied research more effectively. This book takes readers on a journey into the world of knowledge recommendation, and of systems of knowledge recommendation that use machine intelligence algorithms. It illustrates knowledge recommendation using two examples. The first is the recommendation of reviewers and experts who can evaluate manuscripts of academic articles, or of research and development project proposals. The second is innovation support, which involves bringing science and business together by recommending information that pertains to innovations, projects, prospective partners, experts, and conferences meaningfully. The book also describes the selection of the algorithms that transform data into information and then into knowledge, which is then used in the information systems. More specifically, recommendation and information extraction algorithms are used to acquire data, classify publications, identify (disambiguate) their authors, extract keywords, evaluate whether enterprises are innovative, and recommend knowledge. This book comprises original work and is unique in many ways. The systems and algorithms it presents are informed by contemporary solutions described in the literature - including many compelling, novel, and original aspects. The new and promising directions the book presents, as well as the techniques of machine learning applied to knowledge recommendation, are all original.
Building A Recommendation System With R
DOWNLOAD
Author : Suresh K. Gorakala
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-09-29
Building A Recommendation System With R written by Suresh K. Gorakala and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-29 with Computers categories.
Learn the art of building robust and powerful recommendation engines using R About This Book Learn to exploit various data mining techniques Understand some of the most popular recommendation techniques This is a step-by-step guide full of real-world examples to help you build and optimize recommendation engines Who This Book Is For If you are a competent developer with some knowledge of machine learning and R, and want to further enhance your skills to build recommendation systems, then this book is for you. What You Will Learn Get to grips with the most important branches of recommendation Understand various data processing and data mining techniques Evaluate and optimize the recommendation algorithms Prepare and structure the data before building models Discover different recommender systems along with their implementation in R Explore various evaluation techniques used in recommender systems Get to know about recommenderlab, an R package, and understand how to optimize it to build efficient recommendation systems In Detail A recommendation system performs extensive data analysis in order to generate suggestions to its users about what might interest them. R has recently become one of the most popular programming languages for the data analysis. Its structure allows you to interactively explore the data and its modules contain the most cutting-edge techniques thanks to its wide international community. This distinctive feature of the R language makes it a preferred choice for developers who are looking to build recommendation systems. The book will help you understand how to build recommender systems using R. It starts off by explaining the basics of data mining and machine learning. Next, you will be familiarized with how to build and optimize recommender models using R. Following that, you will be given an overview of the most popular recommendation techniques. Finally, you will learn to implement all the concepts you have learned throughout the book to build a recommender system. Style and approach This is a step-by-step guide that will take you through a series of core tasks. Every task is explained in detail with the help of practical examples.
Recommender Systems
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer
Release Date : 2016-03-28
Recommender Systems written by Charu C. Aggarwal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-28 with Computers categories.
This book comprehensively covers the topic of recommender systems, which provide personalized recommendations of products or services to users based on their previous searches or purchases. Recommender system methods have been adapted to diverse applications including query log mining, social networking, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. The chapters of this book are organized into three categories: Algorithms and evaluation: These chapters discuss the fundamental algorithms in recommender systems, including collaborative filtering methods, content-based methods, knowledge-based methods, ensemble-based methods, and evaluation. Recommendations in specific domains and contexts: the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored. Advanced topics and applications: Various robustness aspects of recommender systems, such as shilling systems, attack models, and their defenses are discussed. In addition, recent topics, such as learning to rank, multi-armed bandits, group systems, multi-criteria systems, and active learning systems, are introduced together with applications. Although this book primarily serves as a textbook, it will also appeal to industrial practitioners and researchers due to its focus on applications and references. Numerous examples and exercises have been provided, and a solution manual is available for instructors.
Recommendation Engines
DOWNLOAD
Author : Michael Schrage
language : en
Publisher: MIT Press
Release Date : 2020-09-01
Recommendation Engines written by Michael Schrage and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-01 with Technology & Engineering categories.
How companies like Amazon, Netflix, and Spotify know what "you might also like": the history, technology, business, and societal impact of online recommendation engines. Increasingly, our technologies are giving us better, faster, smarter, and more personal advice than our own families and best friends. Amazon already knows what kind of books and household goods you like and is more than eager to recommend more; YouTube and TikTok always have another video lined up to show you; Netflix has crunched the numbers of your viewing habits to suggest whole genres that you would enjoy. In this volume in the MIT Press's Essential Knowledge series, innovation expert Michael Schrage explains the origins, technologies, business applications, and increasing societal impact of recommendation engines, the systems that allow companies worldwide to know what products, services, and experiences "you might also like."
Recommender System With Machine Learning And Artificial Intelligence
DOWNLOAD
Author : Sachi Nandan Mohanty
language : en
Publisher: John Wiley & Sons
Release Date : 2020-06-09
Recommender System With Machine Learning And Artificial Intelligence written by Sachi Nandan Mohanty and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-09 with Computers categories.
This book is a multi-disciplinary effort that involves world-wide experts from diverse fields, such as artificial intelligence, human computer interaction, information technology, data mining, statistics, adaptive user interfaces, decision support systems, marketing, and consumer behavior. It comprehensively covers the topic of recommender systems, which provide personalized recommendations of items or services to the new users based on their past behavior. Recommender system methods have been adapted to diverse applications including social networking, movie recommendation, query log mining, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. Recommendations in agricultural or healthcare domains and contexts, the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored. This book illustrates how this technology can support the user in decision-making, planning and purchasing processes in agricultural & healthcare sectors.
Perception And Machine Intelligence
DOWNLOAD
Author : Malay K. Kundu
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-01-19
Perception And Machine Intelligence written by Malay K. Kundu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-19 with Computers categories.
This book constitutes the proceedings of the First Indo-Japanese conference on Perception and Machine Intelligence, PerMIn 2012, held in Kolkata, India, in January 2012. The 41 papers, presented together with 1 keynote paper and 3 plenary papers, were carefully reviewed and selected for inclusion in the book. The papers are organized in topical sections named perception; human-computer interaction; e-nose and e-tongue; machine intelligence and application; image and video processing; and speech and signal processing.
Practical Recommender Systems
DOWNLOAD
Author : Kim Falk
language : en
Publisher: Simon and Schuster
Release Date : 2019-01-18
Practical Recommender Systems written by Kim Falk and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-18 with Computers categories.
Summary Online recommender systems help users find movies, jobs, restaurants-even romance! There's an art in combining statistics, demographics, and query terms to achieve results that will delight them. Learn to build a recommender system the right way: it can make or break your application! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Recommender systems are everywhere, helping you find everything from movies to jobs, restaurants to hospitals, even romance. Using behavioral and demographic data, these systems make predictions about what users will be most interested in at a particular time, resulting in high-quality, ordered, personalized suggestions. Recommender systems are practically a necessity for keeping your site content current, useful, and interesting to your visitors. About the Book Practical Recommender Systems explains how recommender systems work and shows how to create and apply them for your site. After covering the basics, you'll see how to collect user data and produce personalized recommendations. You'll learn how to use the most popular recommendation algorithms and see examples of them in action on sites like Amazon and Netflix. Finally, the book covers scaling problems and other issues you'll encounter as your site grows. What's inside How to collect and understand user behavior Collaborative and content-based filtering Machine learning algorithms Real-world examples in Python About the Reader Readers need intermediate programming and database skills. About the Author Kim Falk is an experienced data scientist who works daily with machine learning and recommender systems. Table of Contents PART 1 - GETTING READY FOR RECOMMENDER SYSTEMS What is a recommender? User behavior and how to collect it Monitoring the system Ratings and how to calculate them Non-personalized recommendations The user (and content) who came in from the cold PART 2 - RECOMMENDER ALGORITHMS Finding similarities among users and among content Collaborative filtering in the neighborhood Evaluating and testing your recommender Content-based filtering Finding hidden genres with matrix factorization Taking the best of all algorithms: implementing hybrid recommenders Ranking and learning to rank Future of recommender systems
Knowledge Graphs For Explainable Artificial Intelligence Foundations Applications And Challenges
DOWNLOAD
Author : Ilaria Tiddi
language : en
Publisher:
Release Date : 2020
Knowledge Graphs For Explainable Artificial Intelligence Foundations Applications And Challenges written by Ilaria Tiddi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Artificial intelligence categories.
The latest advances in Artificial Intelligence and (deep) Machine Learning in particular revealed a major drawback of modern intelligent systems, namely the inability to explain their decisions in a way that humans can easily understand. While eXplainable AI rapidly became an active area of research in response to this need for improved understandability and trustworthiness, the field of Knowledge Representation and Reasoning (KRR) has on the other hand a long-standing tradition in managing information in a symbolic, human-understandable form. This book provides the first comprehensive collection of research contributions on the role of knowledge graphs for eXplainable AI (KG4XAI), and the papers included here present academic and industrial research focused on the theory, methods and implementations of AI systems that use structured knowledge to generate reliable explanations. Introductory material on knowledge graphs is included for those readers with only a minimal background in the field, as well as specific chapters devoted to advanced methods, applications and case-studies that use knowledge graphs as a part of knowledge-based, explainable systems (KBX-systems). The final chapters explore current challenges and future research directions in the area of knowledge graphs for eXplainable AI. The book not only provides a scholarly, state-of-the-art overview of research in this subject area, but also fosters the hybrid combination of symbolic and subsymbolic AI methods, and will be of interest to all those working in the field.
Intelligent Techniques In Recommendation Systems Contextual Advancements And New Methods
DOWNLOAD
Author : Dehuri, Satchidananda
language : en
Publisher: IGI Global
Release Date : 2012-11-30
Intelligent Techniques In Recommendation Systems Contextual Advancements And New Methods written by Dehuri, Satchidananda and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-30 with Computers categories.
Although recommendation systems have become a vital research area in the fields of cognitive science, approximation theory, information retrieval and management sciences, they still require improvements to make recommendation methods more effective and intelligent. Intelligent Techniques in Recommendation Systems: Contextual Advancements and New Methods is a comprehensive collection of research on the latest advancements of intelligence techniques and their application to recommendation systems and how this could improve this field of study.
Recommender Systems Handbook
DOWNLOAD
Author : Francesco Ricci
language : en
Publisher: Springer
Release Date : 2015-11-17
Recommender Systems Handbook written by Francesco Ricci and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-17 with Computers categories.
This second edition of a well-received text, with 20 new chapters, presents a coherent and unified repository of recommender systems’ major concepts, theories, methodologies, trends, and challenges. A variety of real-world applications and detailed case studies are included. In addition to wholesale revision of the existing chapters, this edition includes new topics including: decision making and recommender systems, reciprocal recommender systems, recommender systems in social networks, mobile recommender systems, explanations for recommender systems, music recommender systems, cross-domain recommendations, privacy in recommender systems, and semantic-based recommender systems. This multi-disciplinary handbook involves world-wide experts from diverse fields such as artificial intelligence, human-computer interaction, information retrieval, data mining, mathematics, statistics, adaptive user interfaces, decision support systems, psychology, marketing, and consumer behavior. Theoreticians and practitioners from these fields will find this reference to be an invaluable source of ideas, methods and techniques for developing more efficient, cost-effective and accurate recommender systems.