[PDF] L Vy Processes And Stochastic Calculus - eBooks Review

L Vy Processes And Stochastic Calculus


L Vy Processes And Stochastic Calculus
DOWNLOAD

Download L Vy Processes And Stochastic Calculus PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get L Vy Processes And Stochastic Calculus book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



L Vy Processes And Stochastic Calculus


L Vy Processes And Stochastic Calculus
DOWNLOAD
Author : David Applebaum
language : en
Publisher: Cambridge University Press
Release Date : 2009-04-30

L Vy Processes And Stochastic Calculus written by David Applebaum and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-30 with Mathematics categories.


Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.



L Vy Processes And Stochastic Calculus


L Vy Processes And Stochastic Calculus
DOWNLOAD
Author : David Applebaum
language : en
Publisher: Cambridge University Press
Release Date : 2004-07-05

L Vy Processes And Stochastic Calculus written by David Applebaum and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-07-05 with Mathematics categories.


Publisher Description



L Vy Processes And Stochastic Calculus


L Vy Processes And Stochastic Calculus
DOWNLOAD
Author : David Applebaum
language : en
Publisher: Cambridge University Press
Release Date : 2009-04-30

L Vy Processes And Stochastic Calculus written by David Applebaum and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-30 with Mathematics categories.


A fully revised and appended edition of this unique volume, which develops together these two important subjects.



L Vy Processes


L Vy Processes
DOWNLOAD
Author : Ole E Barndorff-Nielsen
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

L Vy Processes written by Ole E Barndorff-Nielsen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


A Lévy process is a continuous-time analogue of a random walk, and as such, is at the cradle of modern theories of stochastic processes. Martingales, Markov processes, and diffusions are extensions and generalizations of these processes. In the past, representatives of the Lévy class were considered most useful for applications to either Brownian motion or the Poisson process. Nowadays the need for modeling jumps, bursts, extremes and other irregular behavior of phenomena in nature and society has led to a renaissance of the theory of general Lévy processes. Researchers and practitioners in fields as diverse as physics, meteorology, statistics, insurance, and finance have rediscovered the simplicity of Lévy processes and their enormous flexibility in modeling tails, dependence and path behavior. This volume, with an excellent introductory preface, describes the state-of-the-art of this rapidly evolving subject with special emphasis on the non-Brownian world. Leading experts present surveys of recent developments, or focus on some most promising applications. Despite its special character, every topic is aimed at the non- specialist, keen on learning about the new exciting face of a rather aged class of processes. An extensive bibliography at the end of each article makes this an invaluable comprehensive reference text. For the researcher and graduate student, every article contains open problems and points out directions for futurearch. The accessible nature of the work makes this an ideal introductory text for graduate seminars in applied probability, stochastic processes, physics, finance, and telecommunications, and a unique guide to the world of Lévy processes.



Brownian Motion And Stochastic Calculus


Brownian Motion And Stochastic Calculus
DOWNLOAD
Author : Ioannis Karatzas
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Brownian Motion And Stochastic Calculus written by Ioannis Karatzas and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Two of the most fundamental concepts in the theory of stochastic processes are the Markov property and the martingale property. * This book is written for readers who are acquainted with both of these ideas in the discrete-time setting, and who now wish to explore stochastic processes in their continuous time context. It has been our goal to write a systematic and thorough exposi tion of this subject, leading in many instances to the frontiers of knowledge. At the same time, we have endeavored to keep the mathematical prerequisites as low as possible, namely, knowledge of measure-theoretic probability and some familiarity with discrete-time processes. The vehicle we have chosen for this task is Brownian motion, which we present as the canonical example of both a Markov process and a martingale. We support this point of view by showing how, by means of stochastic integration and random time change, all continuous-path martingales and a multitude of continuous-path Markov processes can be represented in terms of Brownian motion. This approach forces us to leave aside those processes which do not have continuous paths. Thus, the Poisson process is not a primary object of study, although it is developed in Chapter 1 to be used as a tool when we later study passage times and local time of Brownian motion.



Fluctuations Of L Vy Processes With Applications


Fluctuations Of L Vy Processes With Applications
DOWNLOAD
Author : Andreas E. Kyprianou
language : en
Publisher: Springer Science & Business Media
Release Date : 2014-01-09

Fluctuations Of L Vy Processes With Applications written by Andreas E. Kyprianou and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-01-09 with Mathematics categories.


Lévy processes are the natural continuous-time analogue of random walks and form a rich class of stochastic processes around which a robust mathematical theory exists. Their application appears in the theory of many areas of classical and modern stochastic processes including storage models, renewal processes, insurance risk models, optimal stopping problems, mathematical finance, continuous-state branching processes and positive self-similar Markov processes. This textbook is based on a series of graduate courses concerning the theory and application of Lévy processes from the perspective of their path fluctuations. Central to the presentation is the decomposition of paths in terms of excursions from the running maximum as well as an understanding of short- and long-term behaviour. The book aims to be mathematically rigorous while still providing an intuitive feel for underlying principles. The results and applications often focus on the case of Lévy processes with jumps in only one direction, for which recent theoretical advances have yielded a higher degree of mathematical tractability. The second edition additionally addresses recent developments in the potential analysis of subordinators, Wiener-Hopf theory, the theory of scale functions and their application to ruin theory, as well as including an extensive overview of the classical and modern theory of positive self-similar Markov processes. Each chapter has a comprehensive set of exercises.



Introduction To Stochastic Calculus With Applications


Introduction To Stochastic Calculus With Applications
DOWNLOAD
Author : Fima C. Klebaner
language : en
Publisher: Imperial College Press
Release Date : 2005

Introduction To Stochastic Calculus With Applications written by Fima C. Klebaner and has been published by Imperial College Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Mathematics categories.


This book presents a concise treatment of stochastic calculus and its applications. It gives a simple but rigorous treatment of the subject including a range of advanced topics, it is useful for practitioners who use advanced theoretical results. It covers advanced applications, such as models in mathematical finance, biology and engineering.Self-contained and unified in presentation, the book contains many solved examples and exercises. It may be used as a textbook by advanced undergraduates and graduate students in stochastic calculus and financial mathematics. It is also suitable for practitioners who wish to gain an understanding or working knowledge of the subject. For mathematicians, this book could be a first text on stochastic calculus; it is good companion to more advanced texts by a way of examples and exercises. For people from other fields, it provides a way to gain a working knowledge of stochastic calculus. It shows all readers the applications of stochastic calculus methods and takes readers to the technical level required in research and sophisticated modelling.This second edition contains a new chapter on bonds, interest rates and their options. New materials include more worked out examples in all chapters, best estimators, more results on change of time, change of measure, random measures, new results on exotic options, FX options, stochastic and implied volatility, models of the age-dependent branching process and the stochastic Lotka-Volterra model in biology, non-linear filtering in engineering and five new figures.Instructors can obtain slides of the text from the author.



Stochastic Processes And Applications


Stochastic Processes And Applications
DOWNLOAD
Author : Grigorios A. Pavliotis
language : en
Publisher: Springer
Release Date : 2014-11-19

Stochastic Processes And Applications written by Grigorios A. Pavliotis and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-19 with Mathematics categories.


This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.



Diffusion Processes And Stochastic Calculus


Diffusion Processes And Stochastic Calculus
DOWNLOAD
Author : Fabrice Baudoin
language : en
Publisher: Erich Schmidt Verlag GmbH & Co. KG
Release Date : 2014

Diffusion Processes And Stochastic Calculus written by Fabrice Baudoin and has been published by Erich Schmidt Verlag GmbH & Co. KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with Mathematics categories.


The main purpose of the book is to present, at a graduate level and in a self-contained way, the most important aspects of the theory of continuous stochastic processes in continuous time and to introduce some of its ramifications such as the theory of semigroups, the Malliavin calculus, and the Lyons' rough paths. This book is intended for students, or even researchers, who wish to learn the basics in a concise but complete and rigorous manner. Several exercises are distributed throughout the text to test the understanding of the reader and each chapter ends with bibliographic comments aimed at those interested in exploring the materials further. Stochastic calculus was developed in the 1950s and the range of its applications is huge and still growing today. Besides being a fundamental component of modern probability theory, domains of applications include but are not limited to: mathematical finance, biology, physics, and engineering sciences. The first part of the text is devoted to the general theory of stochastic processes. The author focuses on the existence and regularity results for processes and on the theory of martingales. This allows him to introduce the Brownian motion quickly and study its most fundamental properties. The second part deals with the study of Markov processes, in particular, diffusions. The author's goal is to stress the connections between these processes and the theory of evolution semigroups. The third part deals with stochastic integrals, stochastic differential equations and Malliavin calculus. In the fourth and final part, the author presents an introduction to the very new theory of rough paths by Terry Lyons.



Real And Stochastic Analysis


Real And Stochastic Analysis
DOWNLOAD
Author : M. M. Rao
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Real And Stochastic Analysis written by M. M. Rao and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


As in the case of the two previous volumes published in 1986 and 1997, the purpose of this monograph is to focus the interplay between real (functional) analysis and stochastic analysis show their mutual benefits and advance the subjects. The presentation of each article, given as a chapter, is in a research-expository style covering the respective topics in depth. In fact, most of the details are included so that each work is essentially self contained and thus will be of use both for advanced graduate students and other researchers interested in the areas considered. Moreover, numerous new problems for future research are suggested in each chapter. The presented articles contain a substantial number of new results as well as unified and simplified accounts of previously known ones. A large part of the material cov ered is on stochastic differential equations on various structures, together with some applications. Although Brownian motion plays a key role, (semi-) martingale theory is important for a considerable extent. Moreover, noncommutative analysis and probabil ity have a prominent role in some chapters, with new ideas and results. A more detailed outline of each of the articles appears in the introduction and outline to assist readers in selecting and starting their work. All chapters have been reviewed.