[PDF] Large Scale Inverse Problems And Quantification Of Uncertainty - eBooks Review

Large Scale Inverse Problems And Quantification Of Uncertainty


Large Scale Inverse Problems And Quantification Of Uncertainty
DOWNLOAD

Download Large Scale Inverse Problems And Quantification Of Uncertainty PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Large Scale Inverse Problems And Quantification Of Uncertainty book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Large Scale Inverse Problems And Quantification Of Uncertainty


Large Scale Inverse Problems And Quantification Of Uncertainty
DOWNLOAD
Author : Lorenz Biegler
language : en
Publisher: John Wiley & Sons
Release Date : 2011-06-24

Large Scale Inverse Problems And Quantification Of Uncertainty written by Lorenz Biegler and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-24 with Mathematics categories.


This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: Brings together the perspectives of researchers in areas of inverse problems and data assimilation. Assesses the current state-of-the-art and identify needs and opportunities for future research. Focuses on the computational methods used to analyze and simulate inverse problems. Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.



Large Scale Inverse Problems And Quantification Of Uncertainty


Large Scale Inverse Problems And Quantification Of Uncertainty
DOWNLOAD
Author : Lorenz Biegler
language : en
Publisher: Wiley
Release Date : 2010-10-12

Large Scale Inverse Problems And Quantification Of Uncertainty written by Lorenz Biegler and has been published by Wiley this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-10-12 with Mathematics categories.


This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: • Brings together the perspectives of researchers in areas of inverse problems and data assimilation. • Assesses the current state-of-the-art and identify needs and opportunities for future research. • Focuses on the computational methods used to analyze and simulate inverse problems. • Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.



Princeton Companion To Applied Mathematics


Princeton Companion To Applied Mathematics
DOWNLOAD
Author : Nicholas J. Higham
language : en
Publisher: Princeton University Press
Release Date : 2015-09-09

Princeton Companion To Applied Mathematics written by Nicholas J. Higham and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-09 with Mathematics categories.


The must-have compendium on applied mathematics This is the most authoritative and accessible single-volume reference book on applied mathematics. Featuring numerous entries by leading experts and organized thematically, it introduces readers to applied mathematics and its uses; explains key concepts; describes important equations, laws, and functions; looks at exciting areas of research; covers modeling and simulation; explores areas of application; and more. Modeled on the popular Princeton Companion to Mathematics, this volume is an indispensable resource for undergraduate and graduate students, researchers, and practitioners in other disciplines seeking a user-friendly reference book on applied mathematics. Features nearly 200 entries organized thematically and written by an international team of distinguished contributors Presents the major ideas and branches of applied mathematics in a clear and accessible way Explains important mathematical concepts, methods, equations, and applications Introduces the language of applied mathematics and the goals of applied mathematical research Gives a wide range of examples of mathematical modeling Covers continuum mechanics, dynamical systems, numerical analysis, discrete and combinatorial mathematics, mathematical physics, and much more Explores the connections between applied mathematics and other disciplines Includes suggestions for further reading, cross-references, and a comprehensive index



Computational Methods For Inverse Problems


Computational Methods For Inverse Problems
DOWNLOAD
Author : Curtis R. Vogel
language : en
Publisher: SIAM
Release Date : 2002-01-01

Computational Methods For Inverse Problems written by Curtis R. Vogel and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-01-01 with Mathematics categories.


Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.



Inverse Problem Theory And Methods For Model Parameter Estimation


Inverse Problem Theory And Methods For Model Parameter Estimation
DOWNLOAD
Author : Albert Tarantola
language : en
Publisher: SIAM
Release Date : 2005-01-01

Inverse Problem Theory And Methods For Model Parameter Estimation written by Albert Tarantola and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-01-01 with Mathematics categories.


While the prediction of observations is a forward problem, the use of actual observations to infer the properties of a model is an inverse problem. Inverse problems are difficult because they may not have a unique solution. The description of uncertainties plays a central role in the theory, which is based on probability theory. This book proposes a general approach that is valid for linear as well as for nonlinear problems. The philosophy is essentially probabilistic and allows the reader to understand the basic difficulties appearing in the resolution of inverse problems. The book attempts to explain how a method of acquisition of information can be applied to actual real-world problems, and many of the arguments are heuristic.



Fundamentals Of Uncertainty Quantification For Engineers


Fundamentals Of Uncertainty Quantification For Engineers
DOWNLOAD
Author : Yan Wang
language : en
Publisher: Elsevier
Release Date : 2025-05-30

Fundamentals Of Uncertainty Quantification For Engineers written by Yan Wang and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-30 with Technology & Engineering categories.


Fundamentals of Uncertainty Quantification for Engineers: Methods and Models provides a comprehensive introduction to uncertainty quantification (UQ) accompanied by a wide variety of applied examples and implementation details to reinforce the concepts outlined in the book. Sections start with an introduction to the history of probability theory and an overview of recent developments of UQ methods in the domains of applied mathematics and data science. Major concepts of copula, Monte Carlo sampling, Markov chain Monte Carlo, polynomial regression, Gaussian process regression, polynomial chaos expansion, stochastic collocation, Bayesian inference, modelform uncertainty, multi-fidelity modeling, model validation, local and global sensitivity analyses, linear and nonlinear dimensionality reduction are included. Advanced UQ methods are also introduced, including stochastic processes, stochastic differential equations, random fields, fractional stochastic differential equations, hidden Markov model, linear Gaussian state space model, as well as non-probabilistic methods such as robust Bayesian analysis, Dempster-Shafer theory, imprecise probability, and interval probability. The book also includes example applications in multiscale modeling, reliability, fatigue, materials design, machine learning, and decision making. • Introduces all major topics of uncertainty quantification with engineering examples and implementation details• Features examples from a wide variety of science and engineering disciplines (e.g., fluids, structural dynamics, materials, manufacturing, multiscale simulation)• Discusses sampling methods, surrogate modeling, stochastic expansion, sensitivity analysis, dimensionality reduction and more



Bayesian Approach To Inverse Problems


Bayesian Approach To Inverse Problems
DOWNLOAD
Author : Jérôme Idier
language : en
Publisher: John Wiley & Sons
Release Date : 2013-03-01

Bayesian Approach To Inverse Problems written by Jérôme Idier and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-01 with Mathematics categories.


Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. The concept of inverse problems precisely originates from the idea of inverting the laws of physics to recover a quantity of interest from measurable data. Unfortunately, most inverse problems are ill-posed, which means that precise and stable solutions are not easy to devise. Regularization is the key concept to solve inverse problems. The goal of this book is to deal with inverse problems and regularized solutions using the Bayesian statistical tools, with a particular view to signal and image estimation. The first three chapters bring the theoretical notions that make it possible to cast inverse problems within a mathematical framework. The next three chapters address the fundamental inverse problem of deconvolution in a comprehensive manner. Chapters 7 and 8 deal with advanced statistical questions linked to image estimation. In the last five chapters, the main tools introduced in the previous chapters are put into a practical context in important applicative areas, such as astronomy or medical imaging.



Recent Numerical Advances In Fluid Mechanics


Recent Numerical Advances In Fluid Mechanics
DOWNLOAD
Author : Omer San
language : en
Publisher: MDPI
Release Date : 2020-07-03

Recent Numerical Advances In Fluid Mechanics written by Omer San and has been published by MDPI this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-03 with Technology & Engineering categories.


In recent decades, the field of computational fluid dynamics has made significant advances in enabling advanced computing architectures to understand many phenomena in biological, geophysical, and engineering fluid flows. Almost all research areas in fluids use numerical methods at various complexities: from molecular to continuum descriptions; from laminar to turbulent regimes; from low speed to hypersonic, from stencil-based computations to meshless approaches; from local basis functions to global expansions, as well as from first-order approximation to high-order with spectral accuracy. Many successful efforts have been put forth in dynamic adaptation strategies, e.g., adaptive mesh refinement and multiresolution representation approaches. Furthermore, with recent advances in artificial intelligence and heterogeneous computing, the broader fluids community has gained the momentum to revisit and investigate such practices. This Special Issue, containing a collection of 13 papers, brings together researchers to address recent numerical advances in fluid mechanics.



Numerical Analysis And Optimization


Numerical Analysis And Optimization
DOWNLOAD
Author : Mehiddin Al-Baali
language : en
Publisher: Springer
Release Date : 2015-07-16

Numerical Analysis And Optimization written by Mehiddin Al-Baali and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-07-16 with Mathematics categories.


Presenting the latest findings in the field of numerical analysis and optimization, this volume balances pure research with practical applications of the subject. Accompanied by detailed tables, figures, and examinations of useful software tools, this volume will equip the reader to perform detailed and layered analysis of complex datasets. Many real-world complex problems can be formulated as optimization tasks. Such problems can be characterized as large scale, unconstrained, constrained, non-convex, non-differentiable, and discontinuous, and therefore require adequate computational methods, algorithms, and software tools. These same tools are often employed by researchers working in current IT hot topics such as big data, optimization and other complex numerical algorithms on the cloud, devising special techniques for supercomputing systems. The list of topics covered include, but are not limited to: numerical analysis, numerical optimization, numerical linear algebra, numerical differential equations, optimal control, approximation theory, applied mathematics, algorithms and software developments, derivative free optimization methods and programming models. The volume also examines challenging applications to various types of computational optimization methods which usually occur in statistics, econometrics, finance, physics, medicine, biology, engineering and industrial sciences.



Computational Mathematical Modeling


Computational Mathematical Modeling
DOWNLOAD
Author : Daniela Calvetti
language : en
Publisher: SIAM
Release Date : 2013-03-21

Computational Mathematical Modeling written by Daniela Calvetti and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-21 with Mathematics categories.


Interesting real-world mathematical modelling problems are complex and can usually be studied at different scales. The scale at which the investigation is carried out is one of the factors that determines the type of mathematics most appropriate to describe the problem. The book concentrates on two modelling paradigms: the macroscopic, in which phenomena are described in terms of time evolution via ordinary differential equations; and the microscopic, which requires knowledge of random events and probability. The exposition is based on this unorthodox combination of deterministic and probabilistic methodologies, and emphasizes the development of computational skills to construct predictive models. To elucidate the concepts, a wealth of examples, self-study problems, and portions of MATLAB code used by the authors are included. This book, which has been extensively tested by the authors for classroom use, is intended for students in mathematics and the physical sciences at the advanced undergraduate level and above.