Large Scale Scientific Computation

DOWNLOAD
Download Large Scale Scientific Computation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Large Scale Scientific Computation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Large Scale Scientific Computation
DOWNLOAD
Author : Seymour V. Parter
language : en
Publisher: Elsevier
Release Date : 2014-05-10
Large Scale Scientific Computation written by Seymour V. Parter and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-10 with Technology & Engineering categories.
Large Scale Scientific Computation is a collection of papers that deals with specialized architectural considerations, efficient use of existing computers, software developments, large scale projects in diverse disciplines, and mathematical approaches to basic algorithmic problems. One paper describes numerical treatment of large highly nonlinear two or three dimensional boundary value problems by quadratic minimization techniques applied in many institutions such as in Laboratoire Central des Ponts et Chaussees, Avions Marcel Dassault et Breguet Aviation. Another paper discusses computer-structured design techniques to improve the reliability, efficiency, and accuracy of future production codes. Computer modelling is a potent tool in numerical weather prediction relying on observation, analysis, initialization, and model development. One paper illustrates a systolic algorithm for matrix triangulation, as well as its uses in the Cholesky decomposition of covariance matrices. Another paper describes the Transient Reactor Analysis Code (TRAC) designed to deal with internal flow problems of nuclear reactors. One paper explains the application of large-scale aerodynamic simulation where the programmer can use finite difference techniques in which a large number of mesh points are strategically and orderly placed in the domain of the flow field. The collection is intended for undergraduates in mathematics, programming, computer science, or engineering courses, and designers or researchers involved in industrial facilities, aeronautics, and nuclear design.
Large Scale Scientific Computing
DOWNLOAD
Author : Svetozar D. Margenov
language : en
Publisher: Springer
Release Date : 2003-06-30
Large Scale Scientific Computing written by Svetozar D. Margenov and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-06-30 with Computers categories.
This book constitutes the thoroughly refereed post-proceedings of the Third International Conference on Large-Scale Scientific Computing, LSSC 2001, held in Sozopol, Bulgaria, in June 2001. The 7 invited full papers and 45 selected revised papers were carefully reviewed for inclusion in the book. The papers are organized in topical sections on robust preconditioning algorithms, Monte-Carlo methods, advanced programming environments for scientific computing, large-scale computations in air pollution modeling, large-scale computations in mechanical engineering, and numerical methods for incompressible flow.
An Introduction To High Performance Scientific Computing
DOWNLOAD
Author :
language : en
Publisher: MIT Press
Release Date : 1996
An Introduction To High Performance Scientific Computing written by and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Computers categories.
Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. This text evolved from a new curriculum in scientific computing that was developed to teach undergraduate science and engineering majors how to use high-performance computing systems (supercomputers) in scientific and engineering applications. Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. The authors begin with a survey of scientific computing and then provide a review of background (numerical analysis, IEEE arithmetic, Unix, Fortran) and tools (elements of MATLAB, IDL, AVS). Next, full coverage is given to scientific visualization and to the architectures (scientific workstations and vector and parallel supercomputers) and performance evaluation needed to solve large-scale problems. The concluding section on applications includes three problems (molecular dynamics, advection, and computerized tomography) that illustrate the challenge of solving problems on a variety of computer architectures as well as the suitability of a particular architecture to solving a particular problem. Finally, since this can only be a hands-on course with extensive programming and experimentation with a variety of architectures and programming paradigms, the authors have provided a laboratory manual and supporting software via anonymous ftp. Scientific and Engineering Computation series
Large Scale Scientific Computing
DOWNLOAD
Author : Ivan Lirkov
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-02-14
Large Scale Scientific Computing written by Ivan Lirkov and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-02-14 with Computers categories.
This book constitutes the thoroughly refereed post-proceedings of the 5th International Conference on Large-Scale Scientific Computations, LSSC 2005, held in Sozopol, Bulgaria in June 2005. The 75 revised full papers presented together with five invited papers were carefully reviewed and selected for inclusion in the book. The papers are organized in topical sections.
High Performance Scientific Computing
DOWNLOAD
Author : Edoardo Di Napoli
language : en
Publisher: Springer
Release Date : 2017-03-01
High Performance Scientific Computing written by Edoardo Di Napoli and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-01 with Computers categories.
This book constitutes the thoroughly refereed post-conference proceedings of the First JARA High-Performance Computing Symposium, JARA-HPC 2016, held in Aachen, Germany, in October 2016. The 21 full papers presented were carefully reviewed and selected from 26 submissions. They cover many diverse topics, such as coupling methods and strategies in Computational Fluid Dynamics (CFD), performance portability and applications in HPC, as well as provenance tracking for large-scale simulations.
Large Scale Scientific Computing
DOWNLOAD
Author : Deuflhard
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Large Scale Scientific Computing written by Deuflhard and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
In this book, the new and rapidly expanding field of scientific computing is understood in a double sense: as computing for scientific and engineering problems and as the science of doing such computations. Thus scientific computing touches at one side mathematical modelling (in the various fields of applications) and at the other side computer science. As soon as the mathematical models de scribe the features of real life processes in sufficient detail, the associated computations tend to be large scale. As a consequence, interest more and more focusses on such numerical methods that can be expected to cope with large scale computational problems. Moreover, given the algorithms which are known to be efficient on a tradi tional computer, the question of implementation on modern supercomputers may get crucial. The present book is the proceedings of a meeting on "Large Scale Scientific Computing" , that was held a t the Oberwolfach Mathematical Institute (July 14-19, 1985) under the auspices of the Sonderforschungsbereich 123 of the University of Heidelberg. Participants included applied scientists with computational interests, numerical analysts, and experts on modern parallel computers. 'l'he purpose of the meeting was to establish a common under standing of recent issues in scientific computing, especially in view of large scale problems. Fields of applications, which have been covered, included semi-conductor design, chemical combustion, flow through porous media, climatology, seismology, fluid dynami. cs, tomography, rheology, hydro power plant optimization, subwil. y control, space technology.
Combinatorial Scientific Computing
DOWNLOAD
Author : Uwe Naumann
language : en
Publisher: CRC Press
Release Date : 2012-01-25
Combinatorial Scientific Computing written by Uwe Naumann and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-25 with Computers categories.
Combinatorial Scientific Computing explores the latest research on creating algorithms and software tools to solve key combinatorial problems on large-scale high-performance computing architectures. It includes contributions from international researchers who are pioneers in designing software and applications for high-performance computing systems
High Performance Scientific Computing
DOWNLOAD
Author : Michael W. Berry
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-01-18
High Performance Scientific Computing written by Michael W. Berry and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-18 with Computers categories.
This book presents the state of the art in parallel numerical algorithms, applications, architectures, and system software. The book examines various solutions for issues of concurrency, scale, energy efficiency, and programmability, which are discussed in the context of a diverse range of applications. Features: includes contributions from an international selection of world-class authorities; examines parallel algorithm-architecture interaction through issues of computational capacity-based codesign and automatic restructuring of programs using compilation techniques; reviews emerging applications of numerical methods in information retrieval and data mining; discusses the latest issues in dense and sparse matrix computations for modern high-performance systems, multicores, manycores and GPUs, and several perspectives on the Spike family of algorithms for solving linear systems; presents outstanding challenges and developing technologies, and puts these in their historical context.
Large Scale Scientific Computations
DOWNLOAD
Author : Ivan Lirkov
language : en
Publisher: Springer Nature
Release Date : 2024-05-23
Large Scale Scientific Computations written by Ivan Lirkov and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-23 with Computers categories.
This book constitutes the refereed proceedings of the 14th International Conference on Large-Scale Scientific Computations, LSSC 2023, held in Sozopol, Bulgaria, during June 5–9, 2023. The 49 full papers included in this book were carefully reviewed and selected from 61 submissions. They were organized in topical sections as follows: preconditioning and multilevel methods; fractures and mixed dimensional modeling: discretizations, solvers, and methodology; machine learning and model order reduction for large scale predictive simulations; fractional differential problems: theoretical aspects, algorithms and applications; variational analysis and optimal control; stochastic optimal control and numerical methods in economics and finance; tensor methods for big data analytics and low-rank approximations of PDEs solutions; applications of metaheuristics to large-scale problems; large-scale models: numerical methods, parallel computations and applications; HPC and HPDA: algorithms and applications.
Parallel Processing For Scientific Computing
DOWNLOAD
Author : Michael A. Heroux
language : en
Publisher: SIAM
Release Date : 2006-01-01
Parallel Processing For Scientific Computing written by Michael A. Heroux and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-01 with Computers categories.
Scientific computing has often been called the third approach to scientific discovery, emerging as a peer to experimentation and theory. Historically, the synergy between experimentation and theory has been well understood: experiments give insight into possible theories, theories inspire experiments, experiments reinforce or invalidate theories, and so on. As scientific computing has evolved to produce results that meet or exceed the quality of experimental and theoretical results, it has become indispensable.Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering. This edited volume serves as an up-to-date reference for researchers and application developers on the state of the art in scientific computing. It also serves as an excellent overview and introduction, especially for graduate and senior-level undergraduate students interested in computational modeling and simulation and related computer science and applied mathematics aspects.Contents List of Figures; List of Tables; Preface; Chapter 1: Frontiers of Scientific Computing: An Overview; Part I: Performance Modeling, Analysis and Optimization. Chapter 2: Performance Analysis: From Art to Science; Chapter 3: Approaches to Architecture-Aware Parallel Scientific Computation; Chapter 4: Achieving High Performance on the BlueGene/L Supercomputer; Chapter 5: Performance Evaluation and Modeling of Ultra-Scale Systems; Part II: Parallel Algorithms and Enabling Technologies. Chapter 6: Partitioning and Load Balancing; Chapter 7: Combinatorial Parallel and Scientific Computing; Chapter 8: Parallel Adaptive Mesh Refinement; Chapter 9: Parallel Sparse Solvers, Preconditioners, and Their Applications; Chapter 10: A Survey of Parallelization Techniques for Multigrid Solvers; Chapter 11: Fault Tolerance in Large-Scale Scientific Computing; Part III: Tools and Frameworks for Parallel Applications. Chapter 12: Parallel Tools and Environments: A Survey; Chapter 13: Parallel Linear Algebra Software; Chapter 14: High-Performance Component Software Systems; Chapter 15: Integrating Component-Based Scientific Computing Software; Part IV: Applications of Parallel Computing. Chapter 16: Parallel Algorithms for PDE-Constrained Optimization; Chapter 17: Massively Parallel Mixed-Integer Programming; Chapter 18: Parallel Methods and Software for Multicomponent Simulations; Chapter 19: Parallel Computational Biology; Chapter 20: Opportunities and Challenges for Parallel Computing in Science and Engineering; Index.