Learn Scratch By Reading And Analysing Projects

DOWNLOAD
Download Learn Scratch By Reading And Analysing Projects PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Learn Scratch By Reading And Analysing Projects book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Learn Scratch By Reading And Analysing Projects
DOWNLOAD
Author : Claudia Yao
language : en
Publisher:
Release Date : 2020-09-21
Learn Scratch By Reading And Analysing Projects written by Claudia Yao and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-21 with categories.
This book is written to support those who would like to touch the high ceiling of Scratch programming and to understand how to develop challenging projects on Scratch. I will concentrate on the use of List, Clone and Pen functionalities by analyzing a few sample projects in depth. Through combining those features artfully, we could realize some amazing functionalities.
The Teacher S Guide To Scratch Advanced
DOWNLOAD
Author : Kai Hutchence
language : en
Publisher: Taylor & Francis
Release Date : 2024-03-14
The Teacher S Guide To Scratch Advanced written by Kai Hutchence and has been published by Taylor & Francis this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-14 with Education categories.
The Teacher’s Guide to Scratch – Advanced is a practical guide for educators preparing sophisticated coding lessons and assignments in their K–12 classrooms. The world’s largest and most active visual programming platform, Scratch helps today’s schools answer the growing call to realize important learning outcomes using coding and computer science. This book illustrates the expert-level potential of Scratch coding, details effective pedagogical strategies and learner collaborations, and offers actionable, accessible troubleshooting tips. Geared toward the advanced user, these four unique coding projects will provide the technical training that teachers need to master Scratch, feeling comfortable and confident in their skills as they unlock the program’s full potential for themselves and their students. Clear goals, a comprehensive glossary, and other features ensure the project’s enduring relevance as a reference work for computer science education in grade school. Thanks to Scratch’s cost-effective open-source license, suitability for blended and project-based learning, notable lack of privacy or security risks, and consistency in format even amid software and interface updates, this will be an enduring practitioner manual and professional development resource for years to come.
Analysis And Prediction Projects Using Machine Learning And Deep Learning With Python
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2022-02-17
Analysis And Prediction Projects Using Machine Learning And Deep Learning With Python written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-17 with Computers categories.
PROJECT 1: DEFAULT LOAN PREDICTION BASED ON CUSTOMER BEHAVIOR Using Machine Learning and Deep Learning with Python In finance, default is failure to meet the legal obligations (or conditions) of a loan, for example when a home buyer fails to make a mortgage payment, or when a corporation or government fails to pay a bond which has reached maturity. A national or sovereign default is the failure or refusal of a government to repay its national debt. The dataset used in this project belongs to a Hackathon organized by "Univ.AI". All values were provided at the time of the loan application. Following are the features in the dataset: Income, Age, Experience, Married/Single, House_Ownership, Car_Ownership, Profession, CITY, STATE, CURRENT_JOB_YRS, CURRENT_HOUSE_YRS, and Risk_Flag. The Risk_Flag indicates whether there has been a default in the past or not. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: AIRLINE PASSENGER SATISFACTION Analysis and Prediction Using Machine Learning and Deep Learning with Python The dataset used in this project contains an airline passenger satisfaction survey. In this case, you will determine what factors are highly correlated to a satisfied (or dissatisfied) passenger and predict passenger satisfaction. Below are the features in the dataset: Gender: Gender of the passengers (Female, Male); Customer Type: The customer type (Loyal customer, disloyal customer); Age: The actual age of the passengers; Type of Travel: Purpose of the flight of the passengers (Personal Travel, Business Travel); Class: Travel class in the plane of the passengers (Business, Eco, Eco Plus); Flight distance: The flight distance of this journey; Inflight wifi service: Satisfaction level of the inflight wifi service (0:Not Applicable;1-5); Departure/Arrival time convenient: Satisfaction level of Departure/Arrival time convenient; Ease of Online booking: Satisfaction level of online booking; Gate location: Satisfaction level of Gate location; Food and drink: Satisfaction level of Food and drink; Online boarding: Satisfaction level of online boarding; Seat comfort: Satisfaction level of Seat comfort; Inflight entertainment: Satisfaction level of inflight entertainment; On-board service: Satisfaction level of On-board service; Leg room service: Satisfaction level of Leg room service; Baggage handling: Satisfaction level of baggage handling; Check-in service: Satisfaction level of Check-in service; Inflight service: Satisfaction level of inflight service; Cleanliness: Satisfaction level of Cleanliness; Departure Delay in Minutes: Minutes delayed when departure; Arrival Delay in Minutes: Minutes delayed when Arrival; and Satisfaction: Airline satisfaction level (Satisfaction, neutral or dissatisfaction) The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: CREDIT CARD CHURNING CUSTOMER ANALYSIS AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON The dataset used in this project consists of more than 10,000 customers mentioning their age, salary, marital_status, credit card limit, credit card category, etc. There are 20 features in the dataset. In the dataset, there are only 16.07% of customers who have churned. Thus, it's a bit difficult to train our model to predict churning customers. Following are the features in the dataset: 'Attrition_Flag', 'Customer_Age', 'Gender', 'Dependent_count', 'Education_Level', 'Marital_Status', 'Income_Category', 'Card_Category', 'Months_on_book', 'Total_Relationship_Count', 'Months_Inactive_12_mon', 'Contacts_Count_12_mon', 'Credit_Limit', 'Total_Revolving_Bal', 'Avg_Open_To_Buy', 'Total_Amt_Chng_Q4_Q1', 'Total_Trans_Amt', 'Total_Trans_Ct', 'Total_Ct_Chng_Q4_Q1', and 'Avg_Utilization_Ratio',. The target variable is 'Attrition_Flag'. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 4: MARKETING ANALYSIS AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON This data set was provided to students for their final project in order to test their statistical analysis skills as part of a MSc. in Business Analytics. It can be utilized for EDA, Statistical Analysis, and Visualizations. Following are the features in the dataset: ID = Customer's unique identifier; Year_Birth = Customer's birth year; Education = Customer's education level; Marital_Status = Customer's marital status; Income = Customer's yearly household income; Kidhome = Number of children in customer's household; Teenhome = Number of teenagers in customer's household; Dt_Customer = Date of customer's enrollment with the company; Recency = Number of days since customer's last purchase; MntWines = Amount spent on wine in the last 2 years; MntFruits = Amount spent on fruits in the last 2 years; MntMeatProducts = Amount spent on meat in the last 2 years; MntFishProducts = Amount spent on fish in the last 2 years; MntSweetProducts = Amount spent on sweets in the last 2 years; MntGoldProds = Amount spent on gold in the last 2 years; NumDealsPurchases = Number of purchases made with a discount; NumWebPurchases = Number of purchases made through the company's web site; NumCatalogPurchases = Number of purchases made using a catalogue; NumStorePurchases = Number of purchases made directly in stores; NumWebVisitsMonth = Number of visits to company's web site in the last month; AcceptedCmp3 = 1 if customer accepted the offer in the 3rd campaign, 0 otherwise; AcceptedCmp4 = 1 if customer accepted the offer in the 4th campaign, 0 otherwise; AcceptedCmp5 = 1 if customer accepted the offer in the 5th campaign, 0 otherwise; AcceptedCmp1 = 1 if customer accepted the offer in the 1st campaign, 0 otherwise; AcceptedCmp2 = 1 if customer accepted the offer in the 2nd campaign, 0 otherwise; Response = 1 if customer accepted the offer in the last campaign, 0 otherwise; Complain = 1 if customer complained in the last 2 years, 0 otherwise; and Country = Customer's location. The machine and deep learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 5: METEOROLOGICAL DATA ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON Meteorological phenomena are described and quantified by the variables of Earth's atmosphere: temperature, air pressure, water vapour, mass flow, and the variations and interactions of these variables, and how they change over time. Different spatial scales are used to describe and predict weather on local, regional, and global levels. The dataset used in this project consists of meteorological data with 96453 total number of data points and with 11 attributes/columns. Following are the columns in the dataset: Formatted Date; Summary; Precip Type; Temperature (C); Apparent Temperature (C); Humidity; Wind Speed (km/h); Wind Bearing (degrees); Visibility (km); Pressure (millibars); and Daily Summary. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.
Three Projects Sentiment Analysis And Prediction Using Machine Learning And Deep Learning With Python Gui
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2022-03-21
Three Projects Sentiment Analysis And Prediction Using Machine Learning And Deep Learning With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-21 with Computers categories.
PROJECT 1: TEXT PROCESSING AND SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI Twitter data used in this project was scraped from February of 2015 and contributors were asked to first classify positive, negative, and neutral tweets, followed by categorizing negative reasons (such as "late flight" or "rude service"). This data was originally posted by Crowdflower last February and includes tweets about 6 major US airlines. Additionally, Crowdflower had their workers extract the sentiment from the tweet as well as what the passenger was dissapointed about if the tweet was negative. The information of main attributes for this project are as follows: airline_sentiment : Sentiment classification.(positivie, neutral, and negative); negativereason : Reason selected for the negative opinion; airline : Name of 6 US Airlines('Delta', 'United', 'Southwest', 'US Airways', 'Virgin America', 'American'); and text : Customer's opinion. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier, and LSTM. Three vectorizers used in machine learning are Hashing Vectorizer, Count Vectorizer, and TFID Vectorizer. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: HOTEL REVIEW: SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI The data used in this project is the data published by Anurag Sharma about hotel reviews that were given by costumers. The data is given in two files, a train and test. The train.csv is the training data, containing unique User_ID for each entry with the review entered by a costumer and the browser and device used. The target variable is Is_Response, a variable that states whether the costumers was happy or not happy while staying in the hotel. This type of variable makes the project to a classification problem. The test.csv is the testing data, contains similar headings as the train data, without the target variable. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier, and LSTM. Three vectorizers used in machine learning are Hashing Vectorizer, Count Vectorizer, and TFID Vectorizer. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: STUDENT ACADEMIC PERFORMANCE ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project consists of student achievement in secondary education of two Portuguese schools. The data attributes include student grades, demographic, social and school-related features) and it was collected by using school reports and questionnaires. Two datasets are provided regarding the performance in two distinct subjects: Mathematics (mat) and Portuguese language (por). In the two datasets were modeled under binary/five-level classification and regression tasks. Important note: the target attribute G3 has a strong correlation with attributes G2 and G1. This occurs because G3 is the final year grade (issued at the 3rd period), while G1 and G2 correspond to the 1st and 2nd period grades. It is more difficult to predict G3 without G2 and G1, but such prediction is much more useful. Attributes in the dataset are as follows: school - student's school (binary: 'GP' - Gabriel Pereira or 'MS' - Mousinho da Silveira); sex - student's sex (binary: 'F' - female or 'M' - male); age - student's age (numeric: from 15 to 22); address - student's home address type (binary: 'U' - urban or 'R' - rural); famsize - family size (binary: 'LE3' - less or equal to 3 or 'GT3' - greater than 3); Pstatus - parent's cohabitation status (binary: 'T' - living together or 'A' - apart); Medu - mother's education (numeric: 0 - none, 1 - primary education (4th grade), 2 - 5th to 9th grade, 3 - secondary education or 4 - higher education); Fedu - father's education (numeric: 0 - none, 1 - primary education (4th grade), 2 - 5th to 9th grade, 3 - secondary education or 4 - higher education); Mjob - mother's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other'); Fjob - father's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other'); reason - reason to choose this school (nominal: close to 'home', school 'reputation', 'course' preference or 'other'); guardian - student's guardian (nominal: 'mother', 'father' or 'other'); traveltime - home to school travel time (numeric: 1 - <15 min., 2 - 15 to 30 min., 3 - 30 min. to 1 hour, or 4 - >1 hour); studytime - weekly study time (numeric: 1 - <2 hours, 2 - 2 to 5 hours, 3 - 5 to 10 hours, or 4 - >10 hours); failures - number of past class failures (numeric: n if 1<=n<3, else 4); schoolsup - extra educational support (binary: yes or no); famsup - family educational support (binary: yes or no); paid - extra paid classes within the course subject (Math or Portuguese) (binary: yes or no); activities - extra-curricular activities (binary: yes or no); nursery - attended nursery school (binary: yes or no); higher - wants to take higher education (binary: yes or no); internet - Internet access at home (binary: yes or no); romantic - with a romantic relationship (binary: yes or no); famrel - quality of family relationships (numeric: from 1 - very bad to 5 - excellent); freetime - free time after school (numeric: from 1 - very low to 5 - very high); goout - going out with friends (numeric: from 1 - very low to 5 - very high); Dalc - workday alcohol consumption (numeric: from 1 - very low to 5 - very high); Walc - weekend alcohol consumption (numeric: from 1 - very low to 5 - very high); health - current health status (numeric: from 1 - very bad to 5 - very good); absences - number of school absences (numeric: from 0 to 93); G1 - first period grade (numeric: from 0 to 20); G2 - second period grade (numeric: from 0 to 20); and G3 - final grade (numeric: from 0 to 20, output target). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy.
Tensorflow Machine Learning Projects
DOWNLOAD
Author : Ankit Jain
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-11-30
Tensorflow Machine Learning Projects written by Ankit Jain and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-30 with Computers categories.
Implement TensorFlow's offerings such as TensorBoard, TensorFlow.js, TensorFlow Probability, and TensorFlow Lite to build smart automation projects Key FeaturesUse machine learning and deep learning principles to build real-world projectsGet to grips with TensorFlow's impressive range of module offeringsImplement projects on GANs, reinforcement learning, and capsule networkBook Description TensorFlow has transformed the way machine learning is perceived. TensorFlow Machine Learning Projects teaches you how to exploit the benefits—simplicity, efficiency, and flexibility—of using TensorFlow in various real-world projects. With the help of this book, you’ll not only learn how to build advanced projects using different datasets but also be able to tackle common challenges using a range of libraries from the TensorFlow ecosystem. To start with, you’ll get to grips with using TensorFlow for machine learning projects; you’ll explore a wide range of projects using TensorForest and TensorBoard for detecting exoplanets, TensorFlow.js for sentiment analysis, and TensorFlow Lite for digit classification. As you make your way through the book, you’ll build projects in various real-world domains, incorporating natural language processing (NLP), the Gaussian process, autoencoders, recommender systems, and Bayesian neural networks, along with trending areas such as Generative Adversarial Networks (GANs), capsule networks, and reinforcement learning. You’ll learn how to use the TensorFlow on Spark API and GPU-accelerated computing with TensorFlow to detect objects, followed by how to train and develop a recurrent neural network (RNN) model to generate book scripts. By the end of this book, you’ll have gained the required expertise to build full-fledged machine learning projects at work. What you will learnUnderstand the TensorFlow ecosystem using various datasets and techniquesCreate recommendation systems for quality product recommendationsBuild projects using CNNs, NLP, and Bayesian neural networksPlay Pac-Man using deep reinforcement learningDeploy scalable TensorFlow-based machine learning systemsGenerate your own book script using RNNsWho this book is for TensorFlow Machine Learning Projects is for you if you are a data analyst, data scientist, machine learning professional, or deep learning enthusiast with basic knowledge of TensorFlow. This book is also for you if you want to build end-to-end projects in the machine learning domain using supervised, unsupervised, and reinforcement learning techniques
Digital Games In Language Learning
DOWNLOAD
Author : Mark Peterson
language : en
Publisher: Taylor & Francis
Release Date : 2022-08-12
Digital Games In Language Learning written by Mark Peterson and has been published by Taylor & Francis this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-12 with Foreign Language Study categories.
This edited volume provides a comprehensive overview of contemporary research into the application of digital games in second and foreign language teaching and learning. As the use of digital games in foreign language education continues to expand, there is a need for publications that provide a window into recent innovations in this increasingly influential area of language education. This volume is wide ranging in scope incorporating both theory and practice and includes contributions from authorities in the field. Areas covered include research reviews and a range of case studies conducted in a variety of international contexts. This volume represents an essential guide to developments in this field and will have wide appeal to students, language educators, game and instructional designers.
The Cambridge Handbook Of Computing Education Research
DOWNLOAD
Author : Sally A. Fincher
language : en
Publisher:
Release Date : 2019-02-13
The Cambridge Handbook Of Computing Education Research written by Sally A. Fincher and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-13 with Computers categories.
This is an authoritative introduction to Computing Education research written by over 50 leading researchers from academia and the industry.
The Official Raspberry Pi Projects Book Volume 2
DOWNLOAD
Author : The Makers of The MagPi magazine
language : en
Publisher: Raspberry Pi Press
Release Date : 2016-11-01
The Official Raspberry Pi Projects Book Volume 2 written by The Makers of The MagPi magazine and has been published by Raspberry Pi Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-01 with Computers categories.
The Official Raspberry Pi projects book returns with inspirational projects, detailed step-by-step guides, and product reviews based around the phenomenon that is the Raspberry Pi. See why educators and makers adore the credit card-sized computer that can be used to make robots, retro games consoles, and even art. In this volume of The Official Raspberry Pi Projects Book, you'll: Get involved with the amazing and very active Raspberry Pi community Be inspired by incredible projects made by other people Learn how to make with your Raspberry Pi with our tutorials Find out about the top kits and accessories for your Pi projects And much, much more! If this is your first time using a Raspberry Pi, you'll also find some very helpful guides to get you started with your Raspberry Pi journey. With millions of Raspberry Pi boards out in the wild, that's millions more people getting into digital making and turning their dreams into a Pi-powered reality. Being so spoilt for choice though means that we've managed to compile an incredible list of projects, guides, and reviews for you. This book was written using an earlier version of Raspberry Pi OS. Please use Raspberry Pi OS (Legacy) for full compatibility. See magpi.cc/legacy for more information.
Five Projects Sqlite And Python Gui For Data Analysis
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2022-11-03
Five Projects Sqlite And Python Gui For Data Analysis written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-03 with Computers categories.
PROJECT 1: FULL SOURCE CODE: PRACTICAL DATA SCIENCE WITH SQLITE AND PYTHON GUI In this project, we provide you with the SQLite sample database named chinook. The chinook sample database is a good database for practicing with SQL, especially SQLite. The detailed description of the database can be found on: https://www.sqlitetutorial.net/sqlite-sample-database/. There are 11 tables in the chinook sample database:The employee table stores employees data such as employee id, last name, first name, etc. It also has a field named ReportsTo to specify who reports to whom; customers table stores customers data; invoices & invoice_items tables: these two tables store invoice data. The invoice table stores invoice header data and the invoice_items table stores the invoice line items data; The artist table stores artists data. It is a simple table that contains only the artist id and name; The album table stores data about a list of tracks. Each album belongs to one artist. However, one artist may have multiple albums; The media_type table stores media types such as MPEG audio and AAC audio files; genre table stores music types such as rock, jazz, metal, etc; The track table stores the data of songs. Each track belongs to one album; playlist & playlist_track tables: The playlist table store data about playlists. Each playlist contains a list of tracks. Each track may belong to multiple playlists. The relationship between the playlist table and track table is many-to-many. The playlist_track table is used to reflect this relationship. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the bottom/top 10 sales by employee, the bottom/top 10 sales by customer, the bottom/top 10 sales by customer, the bottom/top 10 sales by artist, the bottom/top 10 sales by genre, the bottom/top 10 sales by play list, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the payment amount by month with mean and EWM, the average payment amount by every month, and amount payment in all years. PROJECT 2: FULL SOURCE CODE: SQLITE FOR STUDENTS AND PROGRAMMERS WITH PYTHON GUI In this project, we provide you with a SQLITE version of an Oracle sample database named OT which is based on a global fictitious company that sells computer hardware including storage, motherboard, RAM, video card, and CPU. You can find the detailed structures of the database: https://www.oracletutorial.com/getting-started/oracle-sample-database/. The company maintains the product information such as name, description standard cost, list price, and product line. It also tracks the inventory information for all products including warehouses where products are available. Because the company operates globally, it has warehouses in various locations around the world. The company records all customer information including name, address, and website. Each customer has at least one contact person with detailed information including name, email, and phone. The company also places a credit limit on each customer to limit the amount that customer can owe. Whenever a customer issues a purchase order, a sales order is created in the database with the pending status. When the company ships the order, the order status becomes shipped. In case the customer cancels an order, the order status becomes canceled. In addition to the sales information, the employee data is recorded with some basic information such as name, email, phone, job title, manager, and hire date. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by category, top 10 sales by category, bottom 10 sales by status, top 10 sales by status, bottom 10 sales by customer city, top 10 sales by customer city, bottom 10 sales by customer state, top 10 sales by customer state, average amount by month with mean and EWM, average amount by every month, amount feature over June 2016, amount feature over 2017, and amount payment in all years. PROJECT 3: SQLITE FOR DATA ANALYST AND DATA SCIENTIST WITH PYTHON GUI In this project, we will use the SQLite version of BikeStores database as a sample database to help you work with MySQL quickly and effectively. The stores table includes the store’s information. Each store has a store name, contact information such as phone and email, and an address including street, city, state, and zip code. The staffs table stores the essential information of staffs including first name, last name. It also contains the communication information such as email and phone. A staff works at a store specified by the value in the store_id column. A store can have one or more staffs. A staff reports to a store manager specified by the value in the manager_id column. If the value in the manager_id is null, then the staff is the top manager. If a staff no longer works for any stores, the value in the active column is set to zero. The categories table stores the bike’s categories such as children bicycles, comfort bicycles, and electric bikes. The products table stores the product’s information such as name, brand, category, model year, and list price. Each product belongs to a brand specified by the brand_id column. Hence, a brand may have zero or many products. Each product also belongs a category specified by the category_id column. Also, each category may have zero or many products. The customers table stores customer’s information including first name, last name, phone, email, street, city, state, zip code, and photo path. The orders table stores the sales order’s header information including customer, order status, order date, required date, shipped date. It also stores the information on where the sales transaction was created (store) and who created it (staff). Each sales order has a row in the sales_orders table. A sales order has one or many line items stored in the order_items table. The order_items table stores the line items of a sales order. Each line item belongs to a sales order specified by the order_id column. A sales order line item includes product, order quantity, list price, and discount. The stocks table stores the inventory information i.e. the quantity of a particular product in a specific store. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, day, and hour; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by category, top 10 sales by category, bottom 10 sales by brand, top 10 sales by brand, bottom 10 sales by customer city, top 10 sales by customer city, bottom 10 sales by customer state, top 10 sales by customer state, average amount by month with mean and EWM, average amount by every month, amount feature over June 2017, amount feature over 2018, and all amount feature. PROJECT 4: SQLITE FOR DATA ANALYSIS AND VISUALIZATION WITH PYTHON GUI In this project, you will use SQLite version of Northwind database which is a sample database that was originally created by Microsoft and used as the basis for their tutorials in a variety of database products for decades. The Northwind database contains the sales data for a fictitious company called “Northwind Traders,” which imports and exports specialty foods from around the world. The Northwind database is an excellent tutorial schema for a small-business ERP, with customers, orders, inventory, purchasing, suppliers, shipping, employees, and single-entry accounting. The Northwind dataset includes sample data for the following: Suppliers: Suppliers and vendors of Northwind; Customers: Customers who buy products from Northwind; Employees: Employee details of Northwind traders; Products: Product information; Shippers: The details of the shippers who ship the products from the traders to the end-customers; Orders and Order_Details: Sales Order transactions taking place between the customers & the company. The Northwind sample database includes 11 tables and the table relationships are showcased in the following entity relationship diagram. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the SQLite database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, day, and hour; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by supplier, top 10 sales by supplier, bottom 10 sales by customer country, top 10 sales by customer country, bottom 10 sales by supplier country, top 10 sales by supplier country, average amount by month with mean and ewm, average amount by every month, amount feature over June 1997, amount feature over 1998, and all amount feature. PROJECT 5: ZERO TO MASTERY: THE COMPLETE GUIDE TO LEARNING SQLITE AND PYTHON GUI In this project, we provide you with the SQLite version of The Oracle Database Sample Schemas that provides a common platform for examples in each release of the Oracle Database. The sample database is also a good database for practicing with SQL, especially SQLite. The detailed description of the database can be found on: http://luna-ext.di.fc.ul.pt/oracle11g/server.112/e10831/diagrams.htm#insertedID0. The four schemas are a set of interlinked schemas. This set of schemas provides a layered approach to complexity: A simple schema Human Resources (HR) is useful for introducing basic topics. An extension to this schema supports Oracle Internet Directory demos; A second schema, Order Entry (OE), is useful for dealing with matters of intermediate complexity. Many data types are available in this schema, including non-scalar data types; The Online Catalog (OC) subschema is a collection of object-relational database objects built inside the OE schema; The Product Media (PM) schema is dedicated to multimedia data types; The Sales History (SH) schema is designed to allow for demos with large amounts of data. An extension to this schema provides support for advanced analytic processing. The HR schema consists of seven tables: regions, countries, locations, departments, employees, jobs, and job_histories. This book only implements HR schema, since the other schemas will be implemented in the next books.
Three Data Science Projects For Rfm Analysis K Means Clustering And Machine Learning Based Prediction With Python Gui
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2022-05-11
Three Data Science Projects For Rfm Analysis K Means Clustering And Machine Learning Based Prediction With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-11 with Computers categories.
PROJECT 1: RFM ANALYSIS AND K-MEANS CLUSTERING: A CASE STUDY ANALYSIS, CLUSTERING, AND PREDICTION ON RETAIL STORE TRANSACTIONS WITH PYTHON GUI The dataset used in this project is the detailed data on sales of consumer goods obtained by ‘scanning’ the bar codes for individual products at electronic points of sale in a retail store. The dataset provides detailed information about quantities, characteristics and values of goods sold as well as their prices. The anonymized dataset includes 64.682 transactions of 5.242 SKU's sold to 22.625 customers during one year. Dataset Attributes are as follows: Date of Sales Transaction, Customer ID, Transaction ID, SKU Category ID, SKU ID, Quantity Sold, and Sales Amount (Unit price times quantity. For unit price, please divide Sales Amount by Quantity). This dataset can be analyzed with RFM analysis and can be clustered using K-Means algorithm. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: DATA SCIENCE FOR GROCERIES MARKET ANALYSIS, CLUSTERING, AND PREDICTION WITH PYTHON GUI RFM analysis used in this project can be used as a marketing technique used to quantitatively rank and group customers based on the recency, frequency and monetary total of their recent transactions to identify the best customers and perform targeted marketing campaigns. The idea is to segment customers based on when their last purchase was, how often they've purchased in the past, and how much they've spent overall. Clustering, in this case K-Means algorithm, used in this project can be used to place similar customers into mutually exclusive groups; these groups are known as “segments” while the act of grouping is known as segmentation. Segmentation allows businesses to identify the different types and preferences of customers/markets they serve. This is crucial information to have to develop highly effective marketing, product, and business strategies. The dataset in this project has 38765 rows of the purchase orders of people from the grocery stores. These orders can be analyzed with RFM analysis and can be clustered using K-Means algorithm. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: ONLINE RETAIL CLUSTERING AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project is a transnational dataset which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail. The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers. You will be using the online retail transnational dataset to build a RFM clustering and choose the best set of customers which the company should target. In this project, you will perform Cohort analysis and RFM analysis. You will also perform clustering using K-Means to get 5 clusters. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.