[PDF] Learning With Big Data - eBooks Review

Learning With Big Data


Learning With Big Data
DOWNLOAD

Download Learning With Big Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Learning With Big Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Machine Learning And Big Data Analytics Paradigms Analysis Applications And Challenges


Machine Learning And Big Data Analytics Paradigms Analysis Applications And Challenges
DOWNLOAD
Author : Aboul Ella Hassanien
language : en
Publisher: Springer Nature
Release Date : 2020-12-14

Machine Learning And Big Data Analytics Paradigms Analysis Applications And Challenges written by Aboul Ella Hassanien and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-14 with Computers categories.


This book is intended to present the state of the art in research on machine learning and big data analytics. The accepted chapters covered many themes including artificial intelligence and data mining applications, machine learning and applications, deep learning technology for big data analytics, and modeling, simulation, and security with big data. It is a valuable resource for researchers in the area of big data analytics and its applications.



Learning With Big Data


Learning With Big Data
DOWNLOAD
Author : Viktor Mayer-Schönberger
language : en
Publisher: HarperCollins
Release Date : 2014-03-04

Learning With Big Data written by Viktor Mayer-Schönberger and has been published by HarperCollins this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-03-04 with Education categories.


Homework assignments that learn from students. Courses tailored to fit individual pupils. Textbooks that talk back. This is tomorrow’s education landscape, thanks to the power of big data. These advances go beyond online courses. As the New York Times-bestselling authors of Big Data explain, the truly fascinating changes are actually occurring in how we measure students’ progress and how we can use that data to improve education for everyone, in real time, both on- and offline. Learning with Big Data offers an eye-opening, insight-packed tour through these new trends, for educators, administrators, and readers interested in the latest developments in business and technology.



Big Data And Learning Analytics In Higher Education


Big Data And Learning Analytics In Higher Education
DOWNLOAD
Author : Ben Kei Daniel
language : en
Publisher: Springer
Release Date : 2016-08-27

Big Data And Learning Analytics In Higher Education written by Ben Kei Daniel and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-27 with Education categories.


​This book focuses on the uses of big data in the context of higher education. The book describes a wide range of administrative and operational data gathering processes aimed at assessing institutional performance and progress in order to predict future performance, and identifies potential issues related to academic programming, research, teaching and learning​. Big data refers to data which is fundamentally too big and complex and moves too fast for the processing capacity of conventional database systems. The value of big data is the ability to identify useful data and turn it into useable information by identifying patterns and deviations from patterns​.



Machine Learning And Big Data


Machine Learning And Big Data
DOWNLOAD
Author : Uma N. Dulhare
language : en
Publisher: John Wiley & Sons
Release Date : 2020-09-01

Machine Learning And Big Data written by Uma N. Dulhare and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-01 with Computers categories.


This book is intended for academic and industrial developers, exploring and developing applications in the area of big data and machine learning, including those that are solving technology requirements, evaluation of methodology advances and algorithm demonstrations. The intent of this book is to provide awareness of algorithms used for machine learning and big data in the academic and professional community. The 17 chapters are divided into 5 sections: Theoretical Fundamentals; Big Data and Pattern Recognition; Machine Learning: Algorithms & Applications; Machine Learning's Next Frontier and Hands-On and Case Study. While it dwells on the foundations of machine learning and big data as a part of analytics, it also focuses on contemporary topics for research and development. In this regard, the book covers machine learning algorithms and their modern applications in developing automated systems. Subjects covered in detail include: Mathematical foundations of machine learning with various examples. An empirical study of supervised learning algorithms like Naïve Bayes, KNN and semi-supervised learning algorithms viz. S3VM, Graph-Based, Multiview. Precise study on unsupervised learning algorithms like GMM, K-mean clustering, Dritchlet process mixture model, X-means and Reinforcement learning algorithm with Q learning, R learning, TD learning, SARSA Learning, and so forth. Hands-on machine leaning open source tools viz. Apache Mahout, H2O. Case studies for readers to analyze the prescribed cases and present their solutions or interpretations with intrusion detection in MANETS using machine learning. Showcase on novel user-cases: Implications of Electronic Governance as well as Pragmatic Study of BD/ML technologies for agriculture, healthcare, social media, industry, banking, insurance and so on.



Big Data In Education


Big Data In Education
DOWNLOAD
Author : Ben Williamson
language : en
Publisher: SAGE
Release Date : 2017-07-24

Big Data In Education written by Ben Williamson and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-24 with Education categories.


Big data has the power to transform education and educational research. Governments, researchers and commercial companies are only beginning to understand the potential that big data offers in informing policy ideas, contributing to the development of new educational tools and innovative ways of conducting research. This cutting-edge overview explores the current state-of-play, looking at big data and the related topic of computer code to examine the implications for education and schooling for today and the near future. Key topics include: · The role of learning analytics and educational data science in schools · A critical appreciation of code, algorithms and infrastructures · The rise of ‘cognitive classrooms’, and the practical application of computational algorithms to learning environments · Important digital research methods issues for researchers This is essential reading for anyone studying or working in today′s education environment!



Blockchain Big Data And Machine Learning


Blockchain Big Data And Machine Learning
DOWNLOAD
Author : Neeraj Kumar
language : en
Publisher: CRC Press
Release Date : 2020-09-24

Blockchain Big Data And Machine Learning written by Neeraj Kumar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-24 with Computers categories.


Present book covers new paradigms in Blockchain, Big Data and Machine Learning concepts including applications and case studies. It explains dead fusion in realizing the privacy and security of blockchain based data analytic environment. Recent research of security based on big data, blockchain and machine learning has been explained through actual work by practitioners and researchers, including their technical evaluation and comparison with existing technologies. The theoretical background and experimental case studies related to real-time environment are covered as well. Aimed at Senior undergraduate students, researchers and professionals in computer science and engineering and electrical engineering, this book: Converges Blockchain, Big Data and Machine learning in one volume. Connects Blockchain technologies with the data centric applications such Big data and E-Health. Easy to understand examples on how to create your own blockchain supported by case studies of blockchain in different industries. Covers big data analytics examples using R. Includes lllustrative examples in python for blockchain creation.



Machine Learning And Big Data With Kdb Q


Machine Learning And Big Data With Kdb Q
DOWNLOAD
Author : Paul A. Bilokon
language : en
Publisher:
Release Date : 2019-11-11

Machine Learning And Big Data With Kdb Q written by Paul A. Bilokon and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-11 with categories.


Upgrade your programming language to more effectively handle high-frequency data Machine Learning and Big Data with KDB+/Q offers quants, programmers and algorithmic traders a practical entry into the powerful but non-intuitive kdb+ database and q programming language. Ideally designed to handle the speed and volume of high-frequency financial data at sell- and buy-side institutions, these tools have become the de facto standard; this book provides the foundational knowledge practitioners need to work effectively with this rapidly-evolving approach to analytical trading. The discussion follows the natural progression of working strategy development to allow hands-on learning in a familiar sphere, illustrating the contrast of efficiency and capability between the q language and other programming approaches. Rather than an all-encompassing "bible"-type reference, this book is designed with a focus on real-world practicality to help you quickly get up to speed and become productive with the language. Understand why kdb+/q is the ideal solution for high-frequency data Delve into "meat" of q programming to solve practical economic problems Perform everyday operations including basic regressions, cointegration, volatility estimation, modelling and more Learn advanced techniques from market impact and microstructure analyses to machine learning techniques including neural networks The kdb+ database and its underlying programming language q offer unprecedented speed and capability. As trading algorithms and financial models grow ever more complex against the markets they seek to predict, they encompass an ever-larger swath of data - more variables, more metrics, more responsiveness and altogether more "moving parts." Traditional programming languages are increasingly failing to accommodate the growing speed and volume of data, and lack the necessary flexibility that cutting-edge financial modelling demands. Machine Learning and Big Data with KDB+/Q opens up the technology and flattens the learning curve to help you quickly adopt a more effective set of tools.



Deep Learning And Big Data For Intelligent Transportation


Deep Learning And Big Data For Intelligent Transportation
DOWNLOAD
Author : Khaled R. Ahmed
language : en
Publisher: Springer Nature
Release Date : 2021-04-10

Deep Learning And Big Data For Intelligent Transportation written by Khaled R. Ahmed and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-10 with Computers categories.


This book contributes to the progress towards intelligent transportation. It emphasizes new data management and machine learning approaches such as big data, deep learning and reinforcement learning. Deep learning and big data are very energetic and vital research topics of today’s technology. Road sensors, UAVs, GPS, CCTV and incident reports are sources of massive amount of data which are crucial to make serious traffic decisions. Herewith this substantial volume and velocity of data, it is challenging to build reliable prediction models based on machine learning methods and traditional relational database. Therefore, this book includes recent research works on big data, deep convolution networks and IoT-based smart solutions to limit the vehicle’s speed in a particular region, to support autonomous safe driving and to detect animals on roads for mitigating animal-vehicle accidents. This book serves broad readers including researchers, academicians, students and working professional in vehicles manufacturing, health and transportation departments and networking companies.



Big Data And Machine Learning In Quantitative Investment


Big Data And Machine Learning In Quantitative Investment
DOWNLOAD
Author : Tony Guida
language : en
Publisher: John Wiley & Sons
Release Date : 2019-03-25

Big Data And Machine Learning In Quantitative Investment written by Tony Guida and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-25 with Business & Economics categories.


Get to know the ‘why’ and ‘how’ of machine learning and big data in quantitative investment Big Data and Machine Learning in Quantitative Investment is not just about demonstrating the maths or the coding. Instead, it’s a book by practitioners for practitioners, covering the questions of why and how of applying machine learning and big data to quantitative finance. The book is split into 13 chapters, each of which is written by a different author on a specific case. The chapters are ordered according to the level of complexity; beginning with the big picture and taxonomy, moving onto practical applications of machine learning and finally finishing with innovative approaches using deep learning. • Gain a solid reason to use machine learning • Frame your question using financial markets laws • Know your data • Understand how machine learning is becoming ever more sophisticated Machine learning and big data are not a magical solution, but appropriately applied, they are extremely effective tools for quantitative investment — and this book shows you how.