[PDF] Machine Learning And Big Data - eBooks Review

Machine Learning And Big Data


Machine Learning And Big Data
DOWNLOAD

Download Machine Learning And Big Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning And Big Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Machine Learning And Big Data


Machine Learning And Big Data
DOWNLOAD
Author : Uma N. Dulhare
language : en
Publisher: John Wiley & Sons
Release Date : 2020-09-01

Machine Learning And Big Data written by Uma N. Dulhare and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-01 with Computers categories.


This book is intended for academic and industrial developers, exploring and developing applications in the area of big data and machine learning, including those that are solving technology requirements, evaluation of methodology advances and algorithm demonstrations. The intent of this book is to provide awareness of algorithms used for machine learning and big data in the academic and professional community. The 17 chapters are divided into 5 sections: Theoretical Fundamentals; Big Data and Pattern Recognition; Machine Learning: Algorithms & Applications; Machine Learning's Next Frontier and Hands-On and Case Study. While it dwells on the foundations of machine learning and big data as a part of analytics, it also focuses on contemporary topics for research and development. In this regard, the book covers machine learning algorithms and their modern applications in developing automated systems. Subjects covered in detail include: Mathematical foundations of machine learning with various examples. An empirical study of supervised learning algorithms like Naïve Bayes, KNN and semi-supervised learning algorithms viz. S3VM, Graph-Based, Multiview. Precise study on unsupervised learning algorithms like GMM, K-mean clustering, Dritchlet process mixture model, X-means and Reinforcement learning algorithm with Q learning, R learning, TD learning, SARSA Learning, and so forth. Hands-on machine leaning open source tools viz. Apache Mahout, H2O. Case studies for readers to analyze the prescribed cases and present their solutions or interpretations with intrusion detection in MANETS using machine learning. Showcase on novel user-cases: Implications of Electronic Governance as well as Pragmatic Study of BD/ML technologies for agriculture, healthcare, social media, industry, banking, insurance and so on.



Machine Learning And Big Data Analytics Paradigms Analysis Applications And Challenges


Machine Learning And Big Data Analytics Paradigms Analysis Applications And Challenges
DOWNLOAD
Author : Aboul Ella Hassanien
language : en
Publisher: Springer Nature
Release Date : 2020-12-14

Machine Learning And Big Data Analytics Paradigms Analysis Applications And Challenges written by Aboul Ella Hassanien and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-14 with Computers categories.


This book is intended to present the state of the art in research on machine learning and big data analytics. The accepted chapters covered many themes including artificial intelligence and data mining applications, machine learning and applications, deep learning technology for big data analytics, and modeling, simulation, and security with big data. It is a valuable resource for researchers in the area of big data analytics and its applications.



Machine Learning Big Data And Iot For Medical Informatics


Machine Learning Big Data And Iot For Medical Informatics
DOWNLOAD
Author : Pardeep Kumar
language : en
Publisher: Academic Press
Release Date : 2021-06-13

Machine Learning Big Data And Iot For Medical Informatics written by Pardeep Kumar and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-13 with Computers categories.


Machine Learning, Big Data, and IoT for Medical Informatics focuses on the latest techniques adopted in the field of medical informatics. In medical informatics, machine learning, big data, and IOT-based techniques play a significant role in disease diagnosis and its prediction. In the medical field, the structure of data is equally important for accurate predictive analytics due to heterogeneity of data such as ECG data, X-ray data, and image data. Thus, this book focuses on the usability of machine learning, big data, and IOT-based techniques in handling structured and unstructured data. It also emphasizes on the privacy preservation techniques of medical data. This volume can be used as a reference book for scientists, researchers, practitioners, and academicians working in the field of intelligent medical informatics. In addition, it can also be used as a reference book for both undergraduate and graduate courses such as medical informatics, machine learning, big data, and IoT. - Explains the uses of CNN, Deep Learning and extreme machine learning concepts for the design and development of predictive diagnostic systems. - Includes several privacy preservation techniques for medical data. - Presents the integration of Internet of Things with predictive diagnostic systems for disease diagnosis. - Offers case studies and applications relating to machine learning, big data, and health care analysis.



Applications Of Machine Learning In Big Data Analytics And Cloud Computing


Applications Of Machine Learning In Big Data Analytics And Cloud Computing
DOWNLOAD
Author : Subhendu Kumar Pani
language : en
Publisher: CRC Press
Release Date : 2022-09-01

Applications Of Machine Learning In Big Data Analytics And Cloud Computing written by Subhendu Kumar Pani and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-01 with Computers categories.


Cloud Computing and Big Data technologies have become the new descriptors of the digital age. The global amount of digital data has increased more than nine times in volume in just five years and by 2030 its volume may reach a staggering 65 trillion gigabytes. This explosion of data has led to opportunities and transformation in various areas such as healthcare, enterprises, industrial manufacturing and transportation. New Cloud Computing and Big Data tools endow researchers and analysts with novel techniques and opportunities to collect, manage and analyze the vast quantities of data. In Cloud and Big Data Analytics, the two areas of Swarm Intelligence and Deep Learning are a developing type of Machine Learning techniques that show enormous potential for solving complex business problems. Deep Learning enables computers to analyze large quantities of unstructured and binary data and to deduce relationships without requiring specific models or programming instructions. This book introduces the state-of-the-art trends and advances in the use of Machine Learning in Cloud and Big Data Analytics. The book will serve as a reference for Data Scientists, systems architects, developers, new researchers and graduate level students in Computer and Data science. The book will describe the concepts necessary to understand current Machine Learning issues, challenges and possible solutions as well as upcoming trends in Big Data Analytics.



Machine Learning And Big Data With Kdb Q


Machine Learning And Big Data With Kdb Q
DOWNLOAD
Author : Paul A. Bilokon
language : en
Publisher:
Release Date : 2019-11-11

Machine Learning And Big Data With Kdb Q written by Paul A. Bilokon and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-11 with categories.


Upgrade your programming language to more effectively handle high-frequency data Machine Learning and Big Data with KDB+/Q offers quants, programmers and algorithmic traders a practical entry into the powerful but non-intuitive kdb+ database and q programming language. Ideally designed to handle the speed and volume of high-frequency financial data at sell- and buy-side institutions, these tools have become the de facto standard; this book provides the foundational knowledge practitioners need to work effectively with this rapidly-evolving approach to analytical trading. The discussion follows the natural progression of working strategy development to allow hands-on learning in a familiar sphere, illustrating the contrast of efficiency and capability between the q language and other programming approaches. Rather than an all-encompassing "bible"-type reference, this book is designed with a focus on real-world practicality to help you quickly get up to speed and become productive with the language. Understand why kdb+/q is the ideal solution for high-frequency data Delve into "meat" of q programming to solve practical economic problems Perform everyday operations including basic regressions, cointegration, volatility estimation, modelling and more Learn advanced techniques from market impact and microstructure analyses to machine learning techniques including neural networks The kdb+ database and its underlying programming language q offer unprecedented speed and capability. As trading algorithms and financial models grow ever more complex against the markets they seek to predict, they encompass an ever-larger swath of data - more variables, more metrics, more responsiveness and altogether more "moving parts." Traditional programming languages are increasingly failing to accommodate the growing speed and volume of data, and lack the necessary flexibility that cutting-edge financial modelling demands. Machine Learning and Big Data with KDB+/Q opens up the technology and flattens the learning curve to help you quickly adopt a more effective set of tools.



Big Data And Machine Learning In Quantitative Investment


Big Data And Machine Learning In Quantitative Investment
DOWNLOAD
Author : Tony Guida
language : en
Publisher: John Wiley & Sons
Release Date : 2019-03-25

Big Data And Machine Learning In Quantitative Investment written by Tony Guida and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-25 with Business & Economics categories.


Get to know the ‘why’ and ‘how’ of machine learning and big data in quantitative investment Big Data and Machine Learning in Quantitative Investment is not just about demonstrating the maths or the coding. Instead, it’s a book by practitioners for practitioners, covering the questions of why and how of applying machine learning and big data to quantitative finance. The book is split into 13 chapters, each of which is written by a different author on a specific case. The chapters are ordered according to the level of complexity; beginning with the big picture and taxonomy, moving onto practical applications of machine learning and finally finishing with innovative approaches using deep learning. • Gain a solid reason to use machine learning • Frame your question using financial markets laws • Know your data • Understand how machine learning is becoming ever more sophisticated Machine learning and big data are not a magical solution, but appropriately applied, they are extremely effective tools for quantitative investment — and this book shows you how.



Big Data


Big Data
DOWNLOAD
Author : Balamurugan Balusamy
language : en
Publisher: John Wiley & Sons
Release Date : 2021-03-15

Big Data written by Balamurugan Balusamy and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-15 with Mathematics categories.


Learn Big Data from the ground up with this complete and up-to-date resource from leaders in the field Big Data: Concepts, Technology, and Architecture delivers a comprehensive treatment of Big Data tools, terminology, and technology perfectly suited to a wide range of business professionals, academic researchers, and students. Beginning with a fulsome overview of what we mean when we say, “Big Data,” the book moves on to discuss every stage of the lifecycle of Big Data. You’ll learn about the creation of structured, unstructured, and semi-structured data, data storage solutions, traditional database solutions like SQL, data processing, data analytics, machine learning, and data mining. You’ll also discover how specific technologies like Apache Hadoop, SQOOP, and Flume work. Big Data also covers the central topic of big data visualization with Tableau, and you’ll learn how to create scatter plots, histograms, bar, line, and pie charts with that software. Accessibly organized, Big Data includes illuminating case studies throughout the material, showing you how the included concepts have been applied in real-world settings. Some of those concepts include: The common challenges facing big data technology and technologists, like data heterogeneity and incompleteness, data volume and velocity, storage limitations, and privacy concerns Relational and non-relational databases, like RDBMS, NoSQL, and NewSQL databases Virtualizing Big Data through encapsulation, partitioning, and isolating, as well as big data server virtualization Apache software, including Hadoop, Cassandra, Avro, Pig, Mahout, Oozie, and Hive The Big Data analytics lifecycle, including business case evaluation, data preparation, extraction, transformation, analysis, and visualization Perfect for data scientists, data engineers, and database managers, Big Data also belongs on the bookshelves of business intelligence analysts who are required to make decisions based on large volumes of information. Executives and managers who lead teams responsible for keeping or understanding large datasets will also benefit from this book.



Machine Learning For Big Data Analyis


Machine Learning For Big Data Analyis
DOWNLOAD
Author : Siddhartha Bhattacharyya
language : en
Publisher:
Release Date : 2018

Machine Learning For Big Data Analyis written by Siddhartha Bhattacharyya and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.




Blockchain Big Data And Machine Learning


Blockchain Big Data And Machine Learning
DOWNLOAD
Author : Neeraj Kumar
language : en
Publisher: CRC Press
Release Date : 2020-09-24

Blockchain Big Data And Machine Learning written by Neeraj Kumar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-24 with Computers categories.


Present book covers new paradigms in Blockchain, Big Data and Machine Learning concepts including applications and case studies. It explains dead fusion in realizing the privacy and security of blockchain based data analytic environment. Recent research of security based on big data, blockchain and machine learning has been explained through actual work by practitioners and researchers, including their technical evaluation and comparison with existing technologies. The theoretical background and experimental case studies related to real-time environment are covered as well. Aimed at Senior undergraduate students, researchers and professionals in computer science and engineering and electrical engineering, this book: Converges Blockchain, Big Data and Machine learning in one volume. Connects Blockchain technologies with the data centric applications such Big data and E-Health. Easy to understand examples on how to create your own blockchain supported by case studies of blockchain in different industries. Covers big data analytics examples using R. Includes lllustrative examples in python for blockchain creation.



Deep Learning And Big Data For Intelligent Transportation


Deep Learning And Big Data For Intelligent Transportation
DOWNLOAD
Author : Khaled R. Ahmed
language : en
Publisher: Springer Nature
Release Date : 2021-04-10

Deep Learning And Big Data For Intelligent Transportation written by Khaled R. Ahmed and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-10 with Computers categories.


This book contributes to the progress towards intelligent transportation. It emphasizes new data management and machine learning approaches such as big data, deep learning and reinforcement learning. Deep learning and big data are very energetic and vital research topics of today’s technology. Road sensors, UAVs, GPS, CCTV and incident reports are sources of massive amount of data which are crucial to make serious traffic decisions. Herewith this substantial volume and velocity of data, it is challenging to build reliable prediction models based on machine learning methods and traditional relational database. Therefore, this book includes recent research works on big data, deep convolution networks and IoT-based smart solutions to limit the vehicle’s speed in a particular region, to support autonomous safe driving and to detect animals on roads for mitigating animal-vehicle accidents. This book serves broad readers including researchers, academicians, students and working professional in vehicles manufacturing, health and transportation departments and networking companies.