Learning And Inference In Computational Systems Biology

DOWNLOAD
Download Learning And Inference In Computational Systems Biology PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Learning And Inference In Computational Systems Biology book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Learning And Inference In Computational Systems Biology
DOWNLOAD
Author : Neil D. Lawrence
language : en
Publisher:
Release Date : 2010
Learning And Inference In Computational Systems Biology written by Neil D. Lawrence and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Computers categories.
Tools and techniques for biological inference problems at scales ranging from genome-wide to pathway-specific. Computational systems biology unifies the mechanistic approach of systems biology with the data-driven approach of computational biology. Computational systems biology aims to develop algorithms that uncover the structure and parameterization of the underlying mechanistic model--in other words, to answer specific questions about the underlying mechanisms of a biological system--in a process that can be thought of as learning or inference. This volume offers state-of-the-art perspectives from computational biology, statistics, modeling, and machine learning on new methodologies for learning and inference in biological networks.The chapters offer practical approaches to biological inference problems ranging from genome-wide inference of genetic regulation to pathway-specific studies. Both deterministic models (based on ordinary differential equations) and stochastic models (which anticipate the increasing availability of data from small populations of cells) are considered. Several chapters emphasize Bayesian inference, so the editors have included an introduction to the philosophy of the Bayesian approach and an overview of current work on Bayesian inference. Taken together, the methods discussed by the experts in Learning and Inference in Computational Systems Biology provide a foundation upon which the next decade of research in systems biology can be built. Florence d'Alch e-Buc, John Angus, Matthew J. Beal, Nicholas Brunel, Ben Calderhead, Pei Gao, Mark Girolami, Andrew Golightly, Dirk Husmeier, Johannes Jaeger, Neil D. Lawrence, Juan Li, Kuang Lin, Pedro Mendes, Nicholas A. M. Monk, Eric Mjolsness, Manfred Opper, Claudia Rangel, Magnus Rattray, Andreas Ruttor, Guido Sanguinetti, Michalis Titsias, Vladislav Vyshemirsky, David L. Wild, Darren Wilkinson, Guy Yosiphon
Systemic Approaches In Bioinformatics And Computational Systems Biology Recent Advances
DOWNLOAD
Author : Lecca, Paola
language : en
Publisher: IGI Global
Release Date : 2011-12-31
Systemic Approaches In Bioinformatics And Computational Systems Biology Recent Advances written by Lecca, Paola and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-12-31 with Medical categories.
The convergence of biology and computer science was initially motivated by the need to organize and process a growing number of biological observations resulting from rapid advances in experimental techniques. Today, however, close collaboration between biologists, biochemists, medical researchers, and computer scientists has also generated remarkable benefits for the field of computer science. Systemic Approaches in Bioinformatics and Computational Systems Biology: Recent Advances presents new techniques that have resulted from the application of computer science methods to the organization and interpretation of biological data. The book covers three subject areas: bioinformatics, computational biology, and computational systems biology. It focuses on recent, systemic approaches in computer science and mathematics that have been used to model, simulate, and more generally, experiment with biological phenomena at any scale.
Computational Systems Biology In Medicine And Biotechnology
DOWNLOAD
Author : Sonia Cortassa
language : en
Publisher: Springer Nature
Release Date : 2022-05-23
Computational Systems Biology In Medicine And Biotechnology written by Sonia Cortassa and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-23 with Science categories.
This volume addresses the latest state-of-the-art systems biology-oriented approaches that--driven by big data and bioinformatics--are utilized by Computational Systems Biology, an interdisciplinary field that bridges experimental tools with computational tools to tackle complex questions at the frontiers of knowledge in medicine and biotechnology. The chapters in this book are organized into six parts: systems biology of the genome, epigenome, and redox proteome; metabolic networks; aging and longevity; systems biology of diseases; spatiotemporal patterns of rhythms, morphogenesis, and complex dynamics; and genome scale metabolic modeling in biotechnology. In every chapter, readers will find varied methodological approaches applied at different levels, from molecular, cellular, organ to organisms, genome to phenome, and health and disease. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics; criteria utilized for applying specific methodologies; lists of the necessary materials, reagents, software, databases, algorithms, mathematical models, and dedicated analytical procedures; step-by-step, readily reproducible laboratory, bioinformatics, and computational protocols all delivered in didactic and clear style and abundantly illustrated with express case studies and tutorials; and tips on troubleshooting and advice for achieving reproducibility while avoiding mistakes and misinterpretations. The overarching goal driving this volume is to excite the expert and stimulate the newcomer to the field of Computational Systems Biology. Cutting-edge and authoritative, Computational Systems Biology in Medicine and Biotechnology: Methods and Protocols is a valuable resource for pre- and post-graduate students in medicine and biotechnology, and in diverse areas ranging from microbiology to cellular and organismal biology, as well as computational and experimental biologists, and researchers interested in utilizing comprehensive systems biology oriented methods.
Stochastic Modelling For Systems Biology
DOWNLOAD
Author : Darren J. Wilkinson
language : en
Publisher: CRC Press
Release Date : 2006-04-18
Stochastic Modelling For Systems Biology written by Darren J. Wilkinson and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-18 with Mathematics categories.
Although stochastic kinetic models are increasingly accepted as the best way to represent and simulate genetic and biochemical networks, most researchers in the field have limited knowledge of stochastic process theory. The stochastic processes formalism provides a beautiful, elegant, and coherent foundation for chemical kinetics and there is a wealth of associated theory every bit as powerful and elegant as that for conventional continuous deterministic models. The time is right for an introductory text written from this perspective. Stochastic Modelling for Systems Biology presents an accessible introduction to stochastic modelling using examples that are familiar to systems biology researchers. Focusing on computer simulation, the author examines the use of stochastic processes for modelling biological systems. He provides a comprehensive understanding of stochastic kinetic modelling of biological networks in the systems biology context. The text covers the latest simulation techniques and research material, such as parameter inference, and includes many examples and figures as well as software code in R for various applications. While emphasizing the necessary probabilistic and stochastic methods, the author takes a practical approach, rooting his theoretical development in discussions of the intended application. Written with self-study in mind, the book includes technical chapters that deal with the difficult problems of inference for stochastic kinetic models from experimental data. Providing enough background information to make the subject accessible to the non-specialist, the book integrates a fairly diverse literature into a single convenient and notationally consistent source.
Pattern Recognition In Bioinformatics
DOWNLOAD
Author : Tjeerd M.H. Dijkstra
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-09-20
Pattern Recognition In Bioinformatics written by Tjeerd M.H. Dijkstra and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-09-20 with Science categories.
This book constitutes the refereed proceedings of the 5th International Conference on Pattern Recognition in Bioinformatics, PRIB 2010, held in Nijmegen, The Netherlands, in September 2010. The 38 revised full papers presented were carefully reviewed and selected from 46 submissions. The field of bioinformatics has two main objectives: the creation and maintenance of biological databases and the analysis of life sciences data in order to unravel the mysteries of biological function. Computer science methods such as pattern recognition, machine learning, and data mining have a great deal to offer the field of bioinformatics.
Frontiers In Computational And Systems Biology
DOWNLOAD
Author : Jianfeng Feng
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-06-14
Frontiers In Computational And Systems Biology written by Jianfeng Feng and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-06-14 with Science categories.
Biological and biomedical studies have entered a new era over the past two decades thanks to the wide use of mathematical models and computational approaches. A booming of computational biology, which sheerly was a theoretician’s fantasy twenty years ago, has become a reality. Obsession with computational biology and theoretical approaches is evidenced in articles hailing the arrival of what are va- ously called quantitative biology, bioinformatics, theoretical biology, and systems biology. New technologies and data resources in genetics, such as the International HapMap project, enable large-scale studies, such as genome-wide association st- ies, which could potentially identify most common genetic variants as well as rare variants of the human DNA that may alter individual’s susceptibility to disease and the response to medical treatment. Meanwhile the multi-electrode recording from behaving animals makes it feasible to control the animal mental activity, which could potentially lead to the development of useful brain–machine interfaces. - bracing the sheer volume of genetic, genomic, and other type of data, an essential approach is, ?rst of all, to avoid drowning the true signal in the data. It has been witnessed that theoretical approach to biology has emerged as a powerful and st- ulating research paradigm in biological studies, which in turn leads to a new - search paradigm in mathematics, physics, and computer science and moves forward with the interplays among experimental studies and outcomes, simulation studies, and theoretical investigations.
Elements Of Computational Systems Biology
DOWNLOAD
Author : Huma M. Lodhi
language : en
Publisher: John Wiley & Sons
Release Date : 2010-03-25
Elements Of Computational Systems Biology written by Huma M. Lodhi and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-03-25 with Computers categories.
Groundbreaking, long-ranging research in this emergent field that enables solutions to complex biological problems Computational systems biology is an emerging discipline that is evolving quickly due to recent advances in biology such as genome sequencing, high-throughput technologies, and the recent development of sophisticated computational methodologies. Elements of Computational Systems Biology is a comprehensive reference covering the computational frameworks and techniques needed to help research scientists and professionals in computer science, biology, chemistry, pharmaceutical science, and physics solve complex biological problems. Written by leading experts in the field, this practical resource gives detailed descriptions of core subjects, including biological network modeling, analysis, and inference; presents a measured introduction to foundational topics like genomics; and describes state-of-the-art software tools for systems biology. Offers a coordinated integrated systems view of defining and applying computational and mathematical tools and methods to solving problems in systems biology Chapters provide a multidisciplinary approach and range from analysis, modeling, prediction, reasoning, inference, and exploration of biological systems to the implications of computational systems biology on drug design and medicine Helps reduce the gap between mathematics and biology by presenting chapters on mathematical models of biological systems Establishes solutions in computer science, biology, chemistry, and physics by presenting an in-depth description of computational methodologies for systems biology Elements of Computational Systems Biology is intended for academic/industry researchers and scientists in computer science, biology, mathematics, chemistry, physics, biotechnology, and pharmaceutical science. It is also accessible to undergraduate and graduate students in machine learning, data mining, bioinformatics, computational biology, and systems biology courses.
Stochastic Modelling For Systems Biology
DOWNLOAD
Author : Darren J. Wilkinson
language : en
Publisher: CRC Press
Release Date : 2011-11-09
Stochastic Modelling For Systems Biology written by Darren J. Wilkinson and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-11-09 with Mathematics categories.
Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Re-written to reflect this modern perspective, this second edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. Keeping with the spirit of the first edition, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. New in the Second Edition All examples have been updated to Systems Biology Markup Language Level 3 All code relating to simulation, analysis, and inference for stochastic kinetic models has been re-written and re-structured in a more modular way An ancillary website provides links, resources, errata, and up-to-date information on installation and use of the associated R package More background material on the theory of Markov processes and stochastic differential equations, providing more substance for mathematically inclined readers Discussion of some of the more advanced concepts relating to stochastic kinetic models, such as random time change representations, Kolmogorov equations, Fokker-Planck equations and the linear noise approximation Simple modelling of "extrinsic" and "intrinsic" noise An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional mathematical detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.
Computational Systems Biology
DOWNLOAD
Author : Paola Lecca
language : en
Publisher: Woodhead Publishing
Release Date : 2016-07-29
Computational Systems Biology written by Paola Lecca and has been published by Woodhead Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-29 with Science categories.
Computational Systems Biology: Inference and Modelling provides an introduction to, and overview of, network analysis inference approaches which form the backbone of the model of the complex behavior of biological systems. This book addresses the challenge to integrate highly diverse quantitative approaches into a unified framework by highlighting the relationships existing among network analysis, inference, and modeling. The chapters are light in jargon and technical detail so as to make them accessible to the non-specialist reader. The book is addressed at the heterogeneous public of modelers, biologists, and computer scientists. - Provides a unified presentation of network inference, analysis, and modeling - Explores the connection between math and systems biology, providing a framework to learn to analyze, infer, simulate, and modulate the behavior of complex biological systems - Includes chapters in modular format for learning the basics quickly and in the context of questions posed by systems biology - Offers a direct style and flexible formalism all through the exposition of mathematical concepts and biological applications
Statistical Modeling And Machine Learning For Molecular Biology
DOWNLOAD
Author : Alan Moses
language : en
Publisher: CRC Press
Release Date : 2017-01-06
Statistical Modeling And Machine Learning For Molecular Biology written by Alan Moses and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-06 with Computers categories.
• Assumes no background in statistics or computers • Covers most major types of molecular biological data • Covers the statistical and machine learning concepts of most practical utility (P-values, clustering, regression, regularization and classification) • Intended for graduate students beginning careers in molecular biology, systems biology, bioengineering and genetics