[PDF] Learning To Classify Text Using Support Vector Machines - eBooks Review

Learning To Classify Text Using Support Vector Machines


Learning To Classify Text Using Support Vector Machines
DOWNLOAD

Download Learning To Classify Text Using Support Vector Machines PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Learning To Classify Text Using Support Vector Machines book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Learning To Classify Text Using Support Vector Machines


Learning To Classify Text Using Support Vector Machines
DOWNLOAD
Author : Thorsten Joachims
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Learning To Classify Text Using Support Vector Machines written by Thorsten Joachims and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.


Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications. Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning.



Learning To Classify Text Using Support Vector Machines


Learning To Classify Text Using Support Vector Machines
DOWNLOAD
Author : Thorsten Joachims
language : en
Publisher: Springer Science & Business Media
Release Date : 2002-04-30

Learning To Classify Text Using Support Vector Machines written by Thorsten Joachims and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-04-30 with Computers categories.


Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications. Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning.



Learning To Classify Text Using Support Vector Machines


Learning To Classify Text Using Support Vector Machines
DOWNLOAD
Author : Thorsten Joachims
language : en
Publisher:
Release Date : 2002

Learning To Classify Text Using Support Vector Machines written by Thorsten Joachims and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with categories.




Imbalanced Learning


Imbalanced Learning
DOWNLOAD
Author : Haibo He
language : en
Publisher: John Wiley & Sons
Release Date : 2013-06-07

Imbalanced Learning written by Haibo He and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-07 with Technology & Engineering categories.


The first book of its kind to review the current status and future direction of the exciting new branch of machine learning/data mining called imbalanced learning Imbalanced learning focuses on how an intelligent system can learn when it is provided with imbalanced data. Solving imbalanced learning problems is critical in numerous data-intensive networked systems, including surveillance, security, Internet, finance, biomedical, defense, and more. Due to the inherent complex characteristics of imbalanced data sets, learning from such data requires new understandings, principles, algorithms, and tools to transform vast amounts of raw data efficiently into information and knowledge representation. The first comprehensive look at this new branch of machine learning, this book offers a critical review of the problem of imbalanced learning, covering the state of the art in techniques, principles, and real-world applications. Featuring contributions from experts in both academia and industry, Imbalanced Learning: Foundations, Algorithms, and Applications provides chapter coverage on: Foundations of Imbalanced Learning Imbalanced Datasets: From Sampling to Classifiers Ensemble Methods for Class Imbalance Learning Class Imbalance Learning Methods for Support Vector Machines Class Imbalance and Active Learning Nonstationary Stream Data Learning with Imbalanced Class Distribution Assessment Metrics for Imbalanced Learning Imbalanced Learning: Foundations, Algorithms, and Applications will help scientists and engineers learn how to tackle the problem of learning from imbalanced datasets, and gain insight into current developments in the field as well as future research directions.



Twin Support Vector Machines


Twin Support Vector Machines
DOWNLOAD
Author : Jayadeva
language : en
Publisher: Springer
Release Date : 2016-10-12

Twin Support Vector Machines written by Jayadeva and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-12 with Technology & Engineering categories.


This book provides a systematic and focused study of the various aspects of twin support vector machines (TWSVM) and related developments for classification and regression. In addition to presenting most of the basic models of TWSVM and twin support vector regression (TWSVR) available in the literature, it also discusses the important and challenging applications of this new machine learning methodology. A chapter on “Additional Topics” has been included to discuss kernel optimization and support tensor machine topics, which are comparatively new but have great potential in applications. It is primarily written for graduate students and researchers in the area of machine learning and related topics in computer science, mathematics, electrical engineering, management science and finance.



Mining Text Data


Mining Text Data
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-02-03

Mining Text Data written by Charu C. Aggarwal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-03 with Computers categories.


Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.



Support Vector Machines For Pattern Classification


Support Vector Machines For Pattern Classification
DOWNLOAD
Author : Shigeo Abe
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-07-23

Support Vector Machines For Pattern Classification written by Shigeo Abe and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-07-23 with Technology & Engineering categories.


A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.



Gentle Introduction To Support Vector Machines In Biomedicine A Volume 2 Case Studies And Benchmarks


Gentle Introduction To Support Vector Machines In Biomedicine A Volume 2 Case Studies And Benchmarks
DOWNLOAD
Author : Alexander Statnikov
language : en
Publisher: World Scientific Publishing Company
Release Date : 2013-03-21

Gentle Introduction To Support Vector Machines In Biomedicine A Volume 2 Case Studies And Benchmarks written by Alexander Statnikov and has been published by World Scientific Publishing Company this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-21 with Science categories.


Support Vector Machines (SVMs) are among the most important recent developments in pattern recognition and statistical machine learning. They have found a great range of applications in various fields including biology and medicine. However, biomedical researchers often experience difficulties grasping both the theory and applications of these important methods because of lack of technical background. The purpose of this book is to introduce SVMs and their extensions and allow biomedical researchers to understand and apply them in real-life research in a very easy manner. The book is to consist of two volumes: theory and methods (Volume 1) and case studies (Volume 2).



Computer And Computing Technologies In Agriculture


Computer And Computing Technologies In Agriculture
DOWNLOAD
Author : Daoliang Li
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-01-12

Computer And Computing Technologies In Agriculture written by Daoliang Li and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-12 with Computers categories.


The three-volume set IFIP AICT 368-370 constitutes the refereed post-conference proceedings of the 5th IFIP TC 5, SIG 5.1 International Conference on Computer and Computing Technologies in Agriculture, CCTA 2011, held in Beijing, China, in October 2011. The 189 revised papers presented were carefully selected from numerous submissions. They cover a wide range of interesting theories and applications of information technology in agriculture, including simulation models and decision-support systems for agricultural production, agricultural product quality testing, traceability and e-commerce technology, the application of information and communication technology in agriculture, and universal information service technology and service systems development in rural areas. The 62 papers included in the first volume focus on decision support systems, intelligent systems, and artificial intelligence applications.



Advances Of Computational Intelligence In Industrial Systems


Advances Of Computational Intelligence In Industrial Systems
DOWNLOAD
Author : Ying Liu
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-05-23

Advances Of Computational Intelligence In Industrial Systems written by Ying Liu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-05-23 with Computers categories.


Computational Intelligence (CI) has emerged as a rapidly growing field over the past decade. This volume reports the exploration of CI frontiers with an emphasis on a broad spectrum of real-world applications. Such a collection of chapters has presented the state-of-the-art of CI applications in industry and will be an essential resource for professionals and researchers who wish to learn and spot the opportunities in applying CI techniques to their particular problems.