Learning To See Data

DOWNLOAD
Download Learning To See Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Learning To See Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Learning To See Data
DOWNLOAD
Author : Ben Jones
language : en
Publisher: Data Literacy Press
Release Date : 2020-12-15
Learning To See Data written by Ben Jones and has been published by Data Literacy Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-15 with Business & Economics categories.
This book is associated with the 'Data Literacy Level 1' on-demand online course: https://dataliteracy.com/courses/data-literacy-level-1 For most of us, it's rare to go a full day without coming across data in the form of a chart, map or dashboard. Graphical displays of data are all around us, from performance indicators at work to election trackers on the news to traffic maps on the road. But few of us have received training or instruction in how to actually read and interpret them. How many times have we been misled simply because we aren't aware of the pitfalls to avoid when interpreting data visualizations. Learning to See Data will teach you the different ways that data can be encoded in graphical form, and it will give you a deeper understanding of the way our human visual system interprets these encodings. You will also learn about the most common chart types, and the situations in which they are most appropriate. From basic bar charts to overused pie charts to helpful maps and many more, a wide array of chart types are covered in detail, and conventions, pitfalls, strengths and weaknesses of each of them are revealed. This book will help you develop fluency in the interpretation of charts, an ability that we all need to hone and perfect if we are to make meaningful contributions in the professional, public and personal arenas of life. The principles covered in it also serve as a critical background for anyone looking to create charts that others will be able to understand. "This book is clear and evocative, thorough and thoughtful, and remarkably readable: a marvelous launchpad into the world of data." –Tamara Munzner, Professor, University of British Columbia Computer Science "Everyone of us needs good data literacy skills to survive in the modern world. Without them, it's hard to succeed at work, or survive the onslaught of information (and misinformation) across all our media. Ben's book provides the necessary building blocks for a strong foundation. From that foundation, Ben's approach will inspire you to own the process of developing your skills further." –Andy Cotgreave, Technical Evangelism Director, Tableau
Learning To See
DOWNLOAD
Author : Mike Rother
language : en
Publisher: Lean Enterprise Institute
Release Date : 2003
Learning To See written by Mike Rother and has been published by Lean Enterprise Institute this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Business & Economics categories.
Lean production is the gold standard in production systems, but has proven famously difficult to implement in North America. Mass production relies on large inventories, uses "push" processes and struggles with long lead times. Moving towards a system that eliminates muda ("waste") caused by overproduction, while challenging, proves necessary for improved efficiency. Often overlooked, value stream mapping is the essential planning stage for any Lean transformation. In Mike Rother and John Shook's essential guide, you follow the value stream mapping undertaken for Acme Stamping, for its current and future state. Fully illustrated and well-organized, Learning to See is a must-see for the value stream manager.
R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12
R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Learning To Love Data Science
DOWNLOAD
Author : Mike Barlow
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2015-10-27
Learning To Love Data Science written by Mike Barlow and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-27 with Computers categories.
Until recently, many people thought big data was a passing fad. "Data science" was an enigmatic term. Today, big data is taken seriously, and data science is considered downright sexy. With this anthology of reports from award-winning journalist Mike Barlow, you’ll appreciate how data science is fundamentally altering our world, for better and for worse. Barlow paints a picture of the emerging data space in broad strokes. From new techniques and tools to the use of data for social good, you’ll find out how far data science reaches. With this anthology, you’ll learn how: Analysts can now get results from their data queries in near real time Indie manufacturers are blurring the lines between hardware and software Companies try to balance their desire for rapid innovation with the need to tighten data security Advanced analytics and low-cost sensors are transforming equipment maintenance from a cost center to a profit center CIOs have gradually evolved from order takers to business innovators New analytics tools let businesses go beyond data analysis and straight to decision-making Mike Barlow is an award-winning journalist, author, and communications strategy consultant. Since launching his own firm, Cumulus Partners, he has represented major organizations in a number of industries.
Storytelling With Data
DOWNLOAD
Author : Cole Nussbaumer Knaflic
language : en
Publisher: John Wiley & Sons
Release Date : 2015-10-09
Storytelling With Data written by Cole Nussbaumer Knaflic and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-09 with Mathematics categories.
Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it!
Learning From Good And Bad Data
DOWNLOAD
Author : Philip D. Laird
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Learning From Good And Bad Data written by Philip D. Laird and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
This monograph is a contribution to the study of the identification problem: the problem of identifying an item from a known class us ing positive and negative examples. This problem is considered to be an important component of the process of inductive learning, and as such has been studied extensively. In the overview we shall explain the objectives of this work and its place in the overall fabric of learning research. Context. Learning occurs in many forms; the only form we are treat ing here is inductive learning, roughly characterized as the process of forming general concepts from specific examples. Computer Science has found three basic approaches to this problem: • Select a specific learning task, possibly part of a larger task, and construct a computer program to solve that task . • Study cognitive models of learning in humans and extrapolate from them general principles to explain learning behavior. Then construct machine programs to test and illustrate these models. xi Xll PREFACE • Formulate a mathematical theory to capture key features of the induction process. This work belongs to the third category. The various studies of learning utilize training examples (data) in different ways. The three principal ones are: • Similarity-based (or empirical) learning, in which a collection of examples is used to select an explanation from a class of possible rules.
Data Analysis Machine Learning And Knowledge Discovery
DOWNLOAD
Author : Myra Spiliopoulou
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-26
Data Analysis Machine Learning And Knowledge Discovery written by Myra Spiliopoulou and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-26 with Computers categories.
Data analysis, machine learning and knowledge discovery are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medicine, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and knowledge discovery presented during the 36th annual conference of the German Classification Society (GfKl). The conference was held at the University of Hildesheim (Germany) in August 2012.
Learning From Data
DOWNLOAD
Author : Vladimir Cherkassky
language : en
Publisher: John Wiley & Sons
Release Date : 2007-09-10
Learning From Data written by Vladimir Cherkassky and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-09-10 with Computers categories.
An interdisciplinary framework for learning methodologies—covering statistics, neural networks, and fuzzy logic, this book provides a unified treatment of the principles and methods for learning dependencies from data. It establishes a general conceptual framework in which various learning methods from statistics, neural networks, and fuzzy logic can be applied—showing that a few fundamental principles underlie most new methods being proposed today in statistics, engineering, and computer science. Complete with over one hundred illustrations, case studies, and examples making this an invaluable text.
Adoption Of Data Analytics In Higher Education Learning And Teaching
DOWNLOAD
Author : Dirk Ifenthaler
language : en
Publisher: Springer Nature
Release Date : 2020-08-10
Adoption Of Data Analytics In Higher Education Learning And Teaching written by Dirk Ifenthaler and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-10 with Education categories.
The book aims to advance global knowledge and practice in applying data science to transform higher education learning and teaching to improve personalization, access and effectiveness of education for all. Currently, higher education institutions and involved stakeholders can derive multiple benefits from educational data mining and learning analytics by using different data analytics strategies to produce summative, real-time, and predictive or prescriptive insights and recommendations. Educational data mining refers to the process of extracting useful information out of a large collection of complex educational datasets while learning analytics emphasizes insights and responses to real-time learning processes based on educational information from digital learning environments, administrative systems, and social platforms. This volume provides insight into the emerging paradigms, frameworks, methods and processes of managing change to better facilitate organizational transformation toward implementation of educational data mining and learning analytics. It features current research exploring the (a) theoretical foundation and empirical evidence of the adoption of learning analytics, (b) technological infrastructure and staff capabilities required, as well as (c) case studies that describe current practices and experiences in the use of data analytics in higher education.