Lectures On Nonlinear Differential Equation Models In Biology

DOWNLOAD
Download Lectures On Nonlinear Differential Equation Models In Biology PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lectures On Nonlinear Differential Equation Models In Biology book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Lectures On Nonlinear Differential Equation Models In Biology
DOWNLOAD
Author : James Dickson Murray
language : en
Publisher: Oxford University Press, USA
Release Date : 1977
Lectures On Nonlinear Differential Equation Models In Biology written by James Dickson Murray and has been published by Oxford University Press, USA this book supported file pdf, txt, epub, kindle and other format this book has been release on 1977 with Mathematics categories.
Lectures On Nonlinear Differential Equation Models In Biology
DOWNLOAD
Author : James Dickson Murray
language : en
Publisher: Oxford University Press, USA
Release Date : 1977
Lectures On Nonlinear Differential Equation Models In Biology written by James Dickson Murray and has been published by Oxford University Press, USA this book supported file pdf, txt, epub, kindle and other format this book has been release on 1977 with Mathematics categories.
Nonlinear Pdes
DOWNLOAD
Author : Marius Ghergu
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-10-21
Nonlinear Pdes written by Marius Ghergu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-21 with Mathematics categories.
The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications related to phenomena such as: boundary layer phenomena for viscous fluids, population dynamics,, dead core phenomena, etc. It addresses researchers and post-graduate students working at the interplay between mathematics and other fields of science and technology and is a comprehensive introduction to the theory of nonlinear partial differential equations and its main principles also presents their real-life applications in various contexts: mathematical physics, chemistry, mathematical biology, and population genetics. Based on the authors' original work, this volume provides an overview of the field, with examples suitable for researchers but also for graduate students entering research. The method of presentation appeals to readers with diverse backgrounds in partial differential equations and functional analysis. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. The content demonstrates in a firm way that partial differential equations can be used to address a large variety of phenomena occurring in and influencing our daily lives. The extensive reference list and index make this book a valuable resource for researchers working in a variety of fields and who are interested in phenomena modeled by nonlinear partial differential equations.
Mathematical Models In Biology
DOWNLOAD
Author : Leah Edelstein-Keshet
language : en
Publisher: SIAM
Release Date : 1988-01-01
Mathematical Models In Biology written by Leah Edelstein-Keshet and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 1988-01-01 with Mathematics categories.
Mathematical Models in Biology is an introductory book for readers interested in biological applications of mathematics and modeling in biology. A favorite in the mathematical biology community, it shows how relatively simple mathematics can be applied to a variety of models to draw interesting conclusions. Connections are made between diverse biological examples linked by common mathematical themes. A variety of discrete and continuous ordinary and partial differential equation models are explored. Although great advances have taken place in many of the topics covered, the simple lessons contained in this book are still important and informative. Audience: the book does not assume too much background knowledge--essentially some calculus and high-school algebra. It was originally written with third- and fourth-year undergraduate mathematical-biology majors in mind; however, it was picked up by beginning graduate students as well as researchers in math (and some in biology) who wanted to learn about this field.
An Introduction To Nonlinear Partial Differential Equations
DOWNLOAD
Author : J. David Logan
language : en
Publisher: John Wiley & Sons
Release Date : 2008-04-11
An Introduction To Nonlinear Partial Differential Equations written by J. David Logan and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-04-11 with Mathematics categories.
Praise for the First Edition: "This book is well conceived and well written. The author has succeeded in producing a text on nonlinear PDEs that is not only quite readable but also accessible to students from diverse backgrounds." —SIAM Review A practical introduction to nonlinear PDEs and their real-world applications Now in a Second Edition, this popular book on nonlinear partial differential equations (PDEs) contains expanded coverage on the central topics of applied mathematics in an elementary, highly readable format and is accessible to students and researchers in the field of pure and applied mathematics. This book provides a new focus on the increasing use of mathematical applications in the life sciences, while also addressing key topics such as linear PDEs, first-order nonlinear PDEs, classical and weak solutions, shocks, hyperbolic systems, nonlinear diffusion, and elliptic equations. Unlike comparable books that typically only use formal proofs and theory to demonstrate results, An Introduction to Nonlinear Partial Differential Equations, Second Edition takes a more practical approach to nonlinear PDEs by emphasizing how the results are used, why they are important, and how they are applied to real problems. The intertwining relationship between mathematics and physical phenomena is discovered using detailed examples of applications across various areas such as biology, combustion, traffic flow, heat transfer, fluid mechanics, quantum mechanics, and the chemical reactor theory. New features of the Second Edition also include: Additional intermediate-level exercises that facilitate the development of advanced problem-solving skills New applications in the biological sciences, including age-structure, pattern formation, and the propagation of diseases An expanded bibliography that facilitates further investigation into specialized topics With individual, self-contained chapters and a broad scope of coverage that offers instructors the flexibility to design courses to meet specific objectives, An Introduction to Nonlinear Partial Differential Equations, Second Edition is an ideal text for applied mathematics courses at the upper-undergraduate and graduate levels. It also serves as a valuable resource for researchers and professionals in the fields of mathematics, biology, engineering, and physics who would like to further their knowledge of PDEs.
Vito Volterra Symposium On Mathematical Models In Biology
DOWNLOAD
Author : Claudio Barigozzi
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-13
Vito Volterra Symposium On Mathematical Models In Biology written by Claudio Barigozzi and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-13 with Mathematics categories.
The idea of organizing a symposium on mathematical models in biology came to some colleagues, members of the Accademia dei Lincei, in order to point out the importance of mathematics not only for supplying instruments for the elaboration and the evaluation of experimental data, but also for discussing the possibility of developing mathematical formulations of biological problems. This appeared particularly appropriate for genetics, where mathematical models have been of historical importance. When the organizing work had started, it became clear to us that the classic studies of Vito Volterra (who was also a Member of the Academy and its President from 1923 to 1926) might be con sidered a further reason to have the meeting in Rome at the Accademia dei Lincei; thus the meeting is dedicated to his memory. Biology, in its manifold aspects proved to Se ~ difficult object for an exhaustive approach; thus it became necessary for practical reasons to make a choice of problems. Therefore not all branches of biology have been represented. The proceedings of the symposium, as a whole, assume a knowledge of mathematics on the part of the reader; however the problem of teaching mathematics to biologists was the subject of a round table discussion, not recorded in these proceedings. On this were brought up some basic points to be recommended to teachers on an international basis, and a statement was prepared for circulation. The Organizing Committee TABLE OF CONTENTS TOPIC I MODELS OF NATUPAL SELECTION . . . . . . . • . . . .
Advances In The Applications Of Nonstandard Finite Diffference Schemes
DOWNLOAD
Author : Ronald E. Mickens
language : en
Publisher: World Scientific
Release Date : 2005
Advances In The Applications Of Nonstandard Finite Diffference Schemes written by Ronald E. Mickens and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Mathematics categories.
This volume provides a concise introduction to the methodology of nonstandard finite difference (NSFD) schemes construction and shows how they can be applied to the numerical integration of differential equations occurring in the natural, biomedical, and engineering sciences. These methods had their genesis in the work of Mickens in the 1990's and are now beginning to be widely studied and applied by other researchers. The importance of the book derives from its clear and direct explanation of NSFD in the introductory chapter along with a broad discussion of the future directions needed to advance the topic.
Social Self Organization
DOWNLOAD
Author : Dirk Helbing
language : en
Publisher: Springer
Release Date : 2012-05-05
Social Self Organization written by Dirk Helbing and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-05 with Science categories.
What are the principles that keep our society together? This question is even more difficult to answer than the long-standing question, what are the forces that keep our world together. However, the social challenges of humanity in the 21st century ranging from the financial crises to the impacts of globalization, require us to make fast progress in our understanding of how society works, and how our future can be managed in a resilient and sustainable way. This book can present only a few very first steps towards this ambitious goal. However, based on simple models of social interactions, one can already gain some surprising insights into the social, ``macro-level'' outcomes and dynamics that is implied by individual, ``micro-level'' interactions. Depending on the nature of these interactions, they may imply the spontaneous formation of social conventions or the birth of social cooperation, but also their sudden breakdown. This can end in deadly crowd disasters or tragedies of the commons (such as financial crises or environmental destruction). Furthermore, we demonstrate that classical modeling approaches (such as representative agent models) do not provide a sufficient understanding of the self-organization in social systems resulting from individual interactions. The consideration of randomness, spatial or network interdependencies, and nonlinear feedback effects turns out to be crucial to get fundamental insights into how social patterns and dynamics emerge. Given the explanation of sometimes counter-intuitive phenomena resulting from these features and their combination, our evolutionary modeling approach appears to be powerful and insightful. The chapters of this book range from a discussion of the modeling strategy for socio-economic systems over experimental issues up the right way of doing agent-based modeling. We furthermore discuss applications ranging from pedestrian and crowd dynamics over opinion formation, coordination, and cooperation up to conflict, and also address the response to information, issues of systemic risks in society and economics, and new approaches to manage complexity in socio-economic systems. Selected parts of this book had been previously published in peer reviewed journals.
Shock Waves And Reaction Diffusion Equations
DOWNLOAD
Author : Joel Smoller
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Shock Waves And Reaction Diffusion Equations written by Joel Smoller and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
For this edition, a number of typographical errors and minor slip-ups have been corrected. In addition, following the persistent encouragement of Olga Oleinik, I have added a new chapter, Chapter 25, which I titled "Recent Results." This chapter is divided into four sections, and in these I have discussed what I consider to be some of the important developments which have come about since the writing of the first edition. Section I deals with reaction-diffusion equations, and in it are described both the work of C. Jones, on the stability of the travelling wave for the Fitz-Hugh-Nagumo equations, and symmetry-breaking bifurcations. Section II deals with some recent results in shock-wave theory. The main topics considered are L. Tartar's notion of compensated compactness, together with its application to pairs of conservation laws, and T.-P. Liu's work on the stability of viscous profiles for shock waves. In the next section, Conley's connection index and connection matrix are described; these general notions are useful in con structing travelling waves for systems of nonlinear equations. The final sec tion, Section IV, is devoted to the very recent results of C. Jones and R. Gardner, whereby they construct a general theory enabling them to locate the point spectrum of a wide class of linear operators which arise in stability problems for travelling waves. Their theory is general enough to be applica ble to many interesting reaction-diffusion systems.
Mathematics For Dynamic Modeling
DOWNLOAD
Author : Edward Beltrami
language : en
Publisher: Academic Press
Release Date : 1998
Mathematics For Dynamic Modeling written by Edward Beltrami and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Business & Economics categories.
This new edition of Mathematics for Dynamic Modeling updates a widely used and highly-respected textbook. The text is appropriate for upper-level undergraduate and graduate level courses in modeling, dynamical systems, differential equations, and linear multivariable systems offered in a variety of departments including mathematics, engineering, computer science, and economics. The text features many different realistic applications from a wide variety of disciplines. The book covers important tools such as linearization, feedback concepts, the use of Liapunov functions, and optimal control. This new edition is a valuable tool for understanding and teaching a rapidly growing field. Practitioners and researchers may also find this book of interest. Contains a new chapter on stability of dynamic models Covers many realistic applications from a wide variety of fields in an accessible manner Provides a broad introduction to the full scope of dynamical systems Incorporates new developments such as new models for chemical reactions and autocatalysis Integrates MATLAB throughout the text in both examples and illustrations Includes a new introduction to nonlinear differential equations