Lectures On Partial Hyperbolicity And Stable Ergodicity

DOWNLOAD
Download Lectures On Partial Hyperbolicity And Stable Ergodicity PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lectures On Partial Hyperbolicity And Stable Ergodicity book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Lectures On Partial Hyperbolicity And Stable Ergodicity
DOWNLOAD
Author : Ya. B. Pesin
language : en
Publisher: European Mathematical Society
Release Date : 2004
Lectures On Partial Hyperbolicity And Stable Ergodicity written by Ya. B. Pesin and has been published by European Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Mathematics categories.
This book is an introduction to the modern theory of partial hyperbolicity with applications to stable ergodicity theory of smooth dynamical systems. It provides a systematic treatment of the theory and describes all the basic concepts and major results obtained in the area since its creation in the early 1970s. It can be used as a textbook for a graduate student course and is also of interest to professional mathematicians.
Lectures On Partial Hyperbolicity And Stable Ergodicity
DOWNLOAD
Author : Yakov B. Pesin
language : en
Publisher:
Release Date : 2004
Lectures On Partial Hyperbolicity And Stable Ergodicity written by Yakov B. Pesin and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with categories.
Partially Hyperbolic Dynamics Laminations And Teichmuller Flow
DOWNLOAD
Author : Giovanni Forni
language : en
Publisher: American Mathematical Soc.
Release Date :
Partially Hyperbolic Dynamics Laminations And Teichmuller Flow written by Giovanni Forni and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.
This volume collects a set of contributions by participants of the Workshop Partially hyperbolic dynamics, laminations, and Teichmuller flow held at the Fields Institute in Toronto in January 2006. The Workshop brought together several leading experts in two very active fields of contemporary dynamical systems theory: partially hyperbolic dynamics and Teichmuller dynamics. They are unified by ideas coming from the theory of laminations and foliations, dynamical hyperbolicity, and ergodic theory. These are the main themes of the current volume. The volume contains both surveys and research papers on non-uniform and partial hyperbolicity, on dominated splitting and beyond (in Part I), Teichmuller dynamics with applications to interval exchange transformations and on the topology of moduli spaces of quadratic differentials (in Part II), foliations and laminations and other miscellaneous papers (in Part III). Taken together these papers provide a snapshot of the state of the art in some of the most active topics at the crossroads between dynamical systems, smooth ergodic theory, geometry and topology, suitable for advanced graduate students and researchers.Non-specialists will find the extensive, in-depth surveys especially useful.
Ergodic Theory
DOWNLOAD
Author : Cesar E. Silva
language : en
Publisher: Springer Nature
Release Date : 2023-07-31
Ergodic Theory written by Cesar E. Silva and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-31 with Mathematics categories.
This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, covers recent developments in classical areas of ergodic theory, including the asymptotic properties of measurable dynamical systems, spectral theory, entropy, ergodic theorems, joinings, isomorphism theory, recurrence, nonsingular systems. It enlightens connections of ergodic theory with symbolic dynamics, topological dynamics, smooth dynamics, combinatorics, number theory, pressure and equilibrium states, fractal geometry, chaos. In addition, the new edition includes dynamical systems of probabilistic origin, ergodic aspects of Sarnak's conjecture, translation flows on translation surfaces, complexity and classification of measurable systems, operator approach to asymptotic properties, interplay with operator algebras
Mathematics Of Complexity And Dynamical Systems
DOWNLOAD
Author : Robert A. Meyers
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-10-05
Mathematics Of Complexity And Dynamical Systems written by Robert A. Meyers and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-05 with Mathematics categories.
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Introduction To Smooth Ergodic Theory
DOWNLOAD
Author : Luís Barreira
language : en
Publisher: American Mathematical Society
Release Date : 2023-05-19
Introduction To Smooth Ergodic Theory written by Luís Barreira and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-19 with Mathematics categories.
This book is the first comprehensive introduction to smooth ergodic theory. It consists of two parts: the first introduces the core of the theory and the second discusses more advanced topics. In particular, the book describes the general theory of Lyapunov exponents and its applications to the stability theory of differential equations, the concept of nonuniform hyperbolicity, stable manifold theory (with emphasis on absolute continuity of invariant foliations), and the ergodic theory of dynamical systems with nonzero Lyapunov exponents. A detailed description of all the basic examples of conservative systems with nonzero Lyapunov exponents, including the geodesic flows on compact surfaces of nonpositive curvature, is also presented. There are more than 80 exercises. The book is aimed at graduate students specializing in dynamical systems and ergodic theory as well as anyone who wishes to get a working knowledge of smooth ergodic theory and to learn how to use its tools. It can also be used as a source for special topics courses on nonuniform hyperbolicity. The only prerequisite for using this book is a basic knowledge of real analysis, measure theory, differential equations, and topology, although the necessary background definitions and results are provided. In this second edition, the authors improved the exposition and added more exercises to make the book even more student-oriented. They also added new material to bring the book more in line with the current research in dynamical systems.
Handbook Of Dynamical Systems
DOWNLOAD
Author : A. Katok
language : en
Publisher: Elsevier
Release Date : 2005-12-17
Handbook Of Dynamical Systems written by A. Katok and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-12-17 with Mathematics categories.
This second half of Volume 1 of this Handbook follows Volume 1A, which was published in 2002. The contents of these two tightly integrated parts taken together come close to a realization of the program formulated in the introductory survey "Principal Structures of Volume 1A.The present volume contains surveys on subjects in four areas of dynamical systems: Hyperbolic dynamics, parabolic dynamics, ergodic theory and infinite-dimensional dynamical systems (partial differential equations).. Written by experts in the field.. The coverage of ergodic theory in these two parts of Volume 1 is considerably more broad and thorough than that provided in other existing sources. . The final cluster of chapters discusses partial differential equations from the point of view of dynamical systems.
The Abel Prize 2013 2017
DOWNLOAD
Author : Helge Holden
language : en
Publisher: Springer
Release Date : 2019-02-23
The Abel Prize 2013 2017 written by Helge Holden and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-23 with Mathematics categories.
The book presents the winners of the Abel Prize in mathematics for the period 2013–17: Pierre Deligne (2013); Yakov G. Sinai (2014); John Nash Jr. and Louis Nirenberg (2015); Sir Andrew Wiles (2016); and Yves Meyer (2017). The profiles feature autobiographical information as well as a scholarly description of each mathematician’s work. In addition, each profile contains a Curriculum Vitae, a complete bibliography, and the full citation from the prize committee. The book also includes photos for the period 2003–2017 showing many of the additional activities connected with the Abel Prize. As an added feature, video interviews with the Laureates as well as videos from the prize ceremony are provided at an accompanying website (http://extras.springer.com/). This book follows on The Abel Prize: 2003-2007. The First Five Years (Springer, 2010) and The Abel Prize 2008-2012 (Springer 2014), which profile the work of the previous Abel Prize winners.
Lozi Mappings
DOWNLOAD
Author : Zeraoulia Elhadj
language : en
Publisher: CRC Press
Release Date : 2013-08-17
Lozi Mappings written by Zeraoulia Elhadj and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-08-17 with Mathematics categories.
This book is a comprehensive collection of known results about the Lozi map, a piecewise-affine version of the Henon map. Henon map is one of the most studied examples in dynamical systems and it attracts a lot of attention from researchers, however it is difficult to analyze analytically. Simpler structure of the Lozi map makes it more suitable fo
Lectures On Dynamical Systems
DOWNLOAD
Author : Eduard Zehnder
language : en
Publisher: European Mathematical Society
Release Date : 2010
Lectures On Dynamical Systems written by Eduard Zehnder and has been published by European Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Dynamics categories.
This book originated from an introductory lecture course on dynamical systems given by the author for advanced students in mathematics and physics at ETH Zurich. The first part centers around unstable and chaotic phenomena caused by the occurrence of homoclinic points. The existence of homoclinic points complicates the orbit structure considerably and gives rise to invariant hyperbolic sets nearby. The orbit structure in such sets is analyzed by means of the shadowing lemma, whose proof is based on the contraction principle. This lemma is also used to prove S. Smale's theorem about the embedding of Bernoulli systems near homoclinic orbits. The chaotic behavior is illustrated in the simple mechanical model of a periodically perturbed mathematical pendulum. The second part of the book is devoted to Hamiltonian systems. The Hamiltonian formalism is developed in the elegant language of the exterior calculus. The theorem of V. Arnold and R. Jost shows that the solutions of Hamiltonian systems which possess sufficiently many integrals of motion can be written down explicitly and for all times. The existence proofs of global periodic orbits of Hamiltonian systems on symplectic manifolds are based on a variational principle for the old action functional of classical mechanics. The necessary tools from variational calculus are developed. There is an intimate relation between the periodic orbits of Hamiltonian systems and a class of symplectic invariants called symplectic capacities. From these symplectic invariants one derives surprising symplectic rigidity phenomena. This allows a first glimpse of the fast developing new field of symplectic topology.