[PDF] Lectures On Symplectic Geometry And Geometric Quantization - eBooks Review

Lectures On Symplectic Geometry And Geometric Quantization


Lectures On Symplectic Geometry And Geometric Quantization
DOWNLOAD

Download Lectures On Symplectic Geometry And Geometric Quantization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lectures On Symplectic Geometry And Geometric Quantization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Lectures On The Geometry Of Quantization


Lectures On The Geometry Of Quantization
DOWNLOAD
Author : Sean Bates
language : en
Publisher: American Mathematical Soc.
Release Date : 1997

Lectures On The Geometry Of Quantization written by Sean Bates and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Mathematics categories.


These notes are based on a course entitled ``Symplectic Geometry and Geometric Quantization'' taught by Alan Weinstein at the University of California, Berkeley (fall 1992) and at the Centre Emile Borel (spring 1994). The only prerequisite for the course needed is a knowledge of the basic notions from the theory of differentiable manifolds (differential forms, vector fields, transversality, etc.). The aim is to give students an introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role these ideas play in formalizing the transition between the mathematics of classical dynamics (hamiltonian flows on symplectic manifolds) and quantum mechanics (unitary flows on Hilbert spaces). These notes are meant to function as a guide to the literature. The authors refer to other sources for many details that are omitted and can be bypassed on a first reading.



Lectures On Symplectic Geometry And Geometric Quantization


Lectures On Symplectic Geometry And Geometric Quantization
DOWNLOAD
Author : Hanno Rund
language : en
Publisher:
Release Date : 1983

Lectures On Symplectic Geometry And Geometric Quantization written by Hanno Rund and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1983 with Geometric quantization categories.




Lectures On Symplectic Geometry


Lectures On Symplectic Geometry
DOWNLOAD
Author : Ana Cannas da Silva
language : en
Publisher: Springer
Release Date : 2004-10-27

Lectures On Symplectic Geometry written by Ana Cannas da Silva and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-10-27 with Mathematics categories.


The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.



Symplectic Geometry Groupoids And Integrable Systems


Symplectic Geometry Groupoids And Integrable Systems
DOWNLOAD
Author : Pierre Dazord
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Symplectic Geometry Groupoids And Integrable Systems written by Pierre Dazord and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


The papers, some of which are in English, the rest in French, in this volume are based on lectures given during the meeting of the Seminare Sud Rhodanien de Geometrie (SSRG) organized at the Mathematical Sciences Research Institute in 1989. The SSRG was established in 1982 by geometers and mathematical physicists with the aim of developing and coordinating research in symplectic geometry and its applications to analysis and mathematical physics. Among the subjects discussed at the meeting, a special role was given to the theory of symplectic groupoids, the subject of fruitful collaboration involving geometers from Berkeley, Lyon, and Montpellier.



Geometric Quantization And Quantum Mechanics


Geometric Quantization And Quantum Mechanics
DOWNLOAD
Author : Jedrzej Sniatycki
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Geometric Quantization And Quantum Mechanics written by Jedrzej Sniatycki and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Science categories.


This book contains a revised and expanded version of the lecture notes of two seminar series given during the academic year 1976/77 at the Department of Mathematics and Statistics of the University of Calgary, and in the summer of 1978 at the Institute of Theoretical Physics of the Technical University Clausthal. The aim of the seminars was to present geometric quantization from the point of view· of its applica tions to quantum mechanics, and to introduce the quantum dynamics of various physical systems as the result of the geometric quantization of the classical dynamics of these systems. The group representation aspects of geometric quantiza tion as well as proofs of the existence and the uniqueness of the introduced structures can be found in the expository papers of Blattner, Kostant, Sternberg and Wolf, and also in the references quoted in these papers. The books of Souriau (1970) and Simms and Woodhouse (1976) present the theory of geometric quantization and its relationship to quantum mech anics. The purpose of the present book is to complement the preceding ones by including new developments of the theory and emphasizing the computations leading to results in quantum mechanics.



Symplectic Geometry And Analytical Mechanics


Symplectic Geometry And Analytical Mechanics
DOWNLOAD
Author : P. Libermann
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Symplectic Geometry And Analytical Mechanics written by P. Libermann and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Approach your problems from the right end It isn't that they can't see the solution. and begin with the answers. Then one day, It is that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' Brown 'The point of a Pin'. in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thouglit to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sci ences has changed drastically in recent years: measure theory is used (non-trivially) in re gional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homo topy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces.



Lectures On Geometric Quantization


Lectures On Geometric Quantization
DOWNLOAD
Author : David John Simms
language : en
Publisher: Springer
Release Date : 1976

Lectures On Geometric Quantization written by David John Simms and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1976 with Science categories.




An Introduction To Symplectic Geometry


An Introduction To Symplectic Geometry
DOWNLOAD
Author : Rolf Berndt
language : en
Publisher: American Mathematical Society
Release Date : 2024-04-15

An Introduction To Symplectic Geometry written by Rolf Berndt and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-15 with Mathematics categories.


Symplectic geometry is a central topic of current research in mathematics. Indeed, symplectic methods are key ingredients in the study of dynamical systems, differential equations, algebraic geometry, topology, mathematical physics and representations of Lie groups. This book is a true introduction to symplectic geometry, assuming only a general background in analysis and familiarity with linear algebra. It starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudoholomorphic curves. These ideas have revolutionized the subject. The main examples of symplectic manifolds are given, including the cotangent bundle, Kähler manifolds, and coadjoint orbits. Further principal ideas are carefully examined, such as Hamiltonian vector fields, the Poisson bracket, and connections with contact manifolds. Berndt describes some of the close connections between symplectic geometry and mathematical physics in the last two chapters of the book. In particular, the moment map is defined and explored, both mathematically and in its relation to physics. He also introduces symplectic reduction, which is an important tool for reducing the number of variables in a physical system and for constructing new symplectic manifolds from old. The final chapter is on quantization, which uses symplectic methods to take classical mechanics to quantum mechanics. This section includes a discussion of the Heisenberg group and the Weil (or metaplectic) representation of the symplectic group. Several appendices provide background material on vector bundles, on cohomology, and on Lie groups and Lie algebras and their representations. Berndt's presentation of symplectic geometry is a clear and concise introduction to the major methods and applications of the subject, and requires only a minimum of prerequisites. This book would be an excellent text for a graduate course or as a source for anyone who wishes to learn about symplectic geometry.



Symplectic Geometry And Mathematical Physics


Symplectic Geometry And Mathematical Physics
DOWNLOAD
Author : P. Donato
language : en
Publisher: Springer Science & Business Media
Release Date : 1991-12

Symplectic Geometry And Mathematical Physics written by P. Donato and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991-12 with Mathematics categories.


This volume contains the proceedings of the conference "Colloque de Goometrie Symplectique et Physique Mathematique" which was held in Aix-en-Provence (France), June 11-15, 1990, in honor of Jean-Marie Souriau. The conference was one in the series of international meetings of the Seminaire Sud Rhodanien de Goometrie, an organization of geometers and mathematical physicists at the Universities of Avignon, Lyon, Mar seille, and Montpellier. The scientific interests of Souriau, one of the founders of geometric quantization, range from classical mechanics (symplectic geometry) and quantization problems to general relativity and astrophysics. The themes of this conference cover "only" the first two of these four areas. The subjects treated in this volume could be classified in the follow ing way: symplectic and Poisson geometry (Arms-Wilbour, Bloch-Ratiu, Brylinski-Kostant, Cushman-Sjamaar, Dufour, Lichnerowicz, Medina, Ouzilou), classical mechanics (Benenti, Holm-Marsden, Marle) , particles and fields in physics (Garcia Perez-Munoz Masque, Gotay, Montgomery, Ne'eman-Sternberg, Sniatycki) and quantization (Blattner, Huebschmann, Karasev, Rawnsley, Roger, Rosso, Weinstein). However, these subjects are so interrelated that a classification by headings such as "pure differential geometry, applications of Lie groups, constrained systems in physics, etc. ," would have produced a completely different clustering! The list of authors is not quite identical to the list of speakers at the conference. M. Karasev was invited but unable to attend; C. Itzykson and M. Vergne spoke on work which is represented here only by the title of Itzykson's talk (Surfaces triangulees et integration matricielle) and a summary of Vergne's talk.



Symplectic Geometry And Secondary Characteristic Classes


Symplectic Geometry And Secondary Characteristic Classes
DOWNLOAD
Author : Izu Vaisman
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-12-01

Symplectic Geometry And Secondary Characteristic Classes written by Izu Vaisman and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-01 with Mathematics categories.


The present work grew out of a study of the Maslov class (e. g. (37]), which is a fundamental invariant in asymptotic analysis of partial differential equations of quantum physics. One of the many in terpretations of this class was given by F. Kamber and Ph. Tondeur (43], and it indicates that the Maslov class is a secondary characteristic class of a complex trivial vector bundle endowed with a real reduction of its structure group. (In the basic paper of V. I. Arnold about the Maslov class (2], it is also pointed out without details that the Maslov class is characteristic in the category of vector bundles mentioned pre viously. ) Accordingly, we wanted to study the whole range of secondary characteristic classes involved in this interpretation, and we gave a short description of the results in (83]. It turned out that a complete exposition of this theory was rather lengthy, and, moreover, I felt that many potential readers would have to use a lot of scattered references in order to find the necessary information from either symplectic geometry or the theory of the secondary characteristic classes. On the otherhand, both these subjects are of a much larger interest in differential geome try and topology, and in the applications to physical theories.