[PDF] Lectures On The Arthur Selberg Trace Formula - eBooks Review

Lectures On The Arthur Selberg Trace Formula


Lectures On The Arthur Selberg Trace Formula
DOWNLOAD

Download Lectures On The Arthur Selberg Trace Formula PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lectures On The Arthur Selberg Trace Formula book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Lectures On The Arthur Selberg Trace Formula


Lectures On The Arthur Selberg Trace Formula
DOWNLOAD
Author : Stephen S. Gelbart
language : en
Publisher: American Mathematical Soc.
Release Date : 1996

Lectures On The Arthur Selberg Trace Formula written by Stephen S. Gelbart and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Mathematics categories.


The Arthur-Selberg trace formula is an equality between two kinds of traces: the geometric terms given by the conjugacy classes of a group and the spectral terms given by the induced representations. In general, these terms require a truncation in order to converge, which leads to an equality of truncated kernels. The formulas are difficult in general and even the case of $GL$(2) is nontrivial. The book gives proof of Arthur's trace formula of the 1970s and 1980s, with special attention given to $GL$(2). The problem is that when the truncated terms converge, they are also shown to be polynomial in the truncation variable and expressed as ``weighted'' orbital and ``weighted'' characters. In some important cases the trace formula takes on a simple form over $G$. The author gives some examples of this, and also some examples of Jacquet's relative trace formula. This work offers for the first time a simultaneous treatment of a general group with the case of $GL$(2). It also treats the trace formula with the example of Jacquet's relative formula. Features: Discusses why the terms of the geometric and spectral type must be truncated, and why the resulting truncations are polynomials in the truncation of value $T$. Brings into play the significant tool of ($G, M$) families and how the theory of Paley-Weiner is applied. Explains why the truncation formula reduces to a simple formula involving only the elliptic terms on the geometric sides with the representations appearing cuspidally on the spectral side (applies to Tamagawa numbers). Outlines Jacquet's trace formula and shows how it works for $GL$(2).



The Selberg Arthur Trace Formula


The Selberg Arthur Trace Formula
DOWNLOAD
Author : Salahoddin Shokranian
language : en
Publisher: Springer
Release Date : 2006-11-14

The Selberg Arthur Trace Formula written by Salahoddin Shokranian and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-14 with Mathematics categories.


This book based on lectures given by James Arthur discusses the trace formula of Selberg and Arthur. The emphasis is laid on Arthur's trace formula for GL(r), with several examples in order to illustrate the basic concepts. The book will be useful and stimulating reading for graduate students in automorphic forms, analytic number theory, and non-commutative harmonic analysis, as well as researchers in these fields. Contents: I. Number Theory and Automorphic Representations.1.1. Some problems in classical number theory, 1.2. Modular forms and automorphic representations; II. Selberg's Trace Formula 2.1. Historical Remarks, 2.2. Orbital integrals and Selberg's trace formula, 2.3.Three examples, 2.4. A necessary condition, 2.5. Generalizations and applications; III. Kernel Functions and the Convergence Theorem, 3.1. Preliminaries on GL(r), 3.2. Combinatorics and reduction theory, 3.3. The convergence theorem; IV. The Ad lic Theory, 4.1. Basic facts; V. The Geometric Theory, 5.1. The JTO(f) and JT(f) distributions, 5.2. A geometric I-function, 5.3. The weight functions; VI. The Geometric Expansionof the Trace Formula, 6.1. Weighted orbital integrals, 6.2. The unipotent distribution; VII. The Spectral Theory, 7.1. A review of the Eisenstein series, 7.2. Cusp forms, truncation, the trace formula; VIII.The Invariant Trace Formula and its Applications, 8.1. The invariant trace formula for GL(r), 8.2. Applications and remarks



Conformal Riemannian And Lagrangian Geometry


Conformal Riemannian And Lagrangian Geometry
DOWNLOAD
Author : Sun-Yung A. Chang
language : en
Publisher: American Mathematical Soc.
Release Date : 2002

Conformal Riemannian And Lagrangian Geometry written by Sun-Yung A. Chang and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Mathematics categories.


Recent developments in topology and analysis have led to the creation of new lines of investigation in differential geometry. The 2000 Barrett Lectures present the background, context and main techniques of three such lines by means of surveys by leading researchers. The first chapter (by Alice Chang and Paul Yang) introduces new classes of conformal geometric invariants, and then applies powerful techniques in nonlinear differential equations to derive results on compactificationsof manifolds and on Yamabe-type variational problems for these invariants. This is followed by Karsten Grove's lectures, which focus on the use of isometric group actions and metric geometry techniques to understand new examples and classification results in Riemannian geometry, especially inconnection with positive curvature. The chapter written by Jon Wolfson introduces the emerging field of Lagrangian variational problems, which blends in novel ways the structures of symplectic geometry and the techniques of the modern calculus of variations. The lectures provide an up-do-date overview and an introduction to the research literature in each of their areas. The book is a very enjoyable read, which should prove useful to graduate students and researchers in differential geometryand geometric analysis.



Fields Medallists Lectures


Fields Medallists Lectures
DOWNLOAD
Author : Daniel Iagolnitzer
language : en
Publisher: World Scientific
Release Date : 2003

Fields Medallists Lectures written by Daniel Iagolnitzer and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Mathematics categories.


Although the Fields Medal does not have the same public recognition as the Nobel Prizes, they share a similar intellectual standing. It is restricted to the field of mathematics and an age limit of 40 has become an accepted tradition. This volume presents contributions from Fields Medallists.



On The Langlands Program Endoscopy And Beyond


On The Langlands Program Endoscopy And Beyond
DOWNLOAD
Author : Wee Teck Gan
language : en
Publisher: World Scientific
Release Date : 2024-04-15

On The Langlands Program Endoscopy And Beyond written by Wee Teck Gan and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-15 with Mathematics categories.


This is a collection of lecture notes from the minicourses in the December 2018 Langlands Workshop: Endoscopy and Beyond. The volume combines seven introductory chapters on trace formulas, local Arthur packets, and beyond endoscopy. It aims to introduce the endoscopy classification via a basic example of the trace formula for SL(2), explore the more refined questions on the structure of Arthur packets, and look beyond endoscopy following the suggestions of Langlands, Braverman-Kazhdan, Ngo, and Altuğ. The book is a helpful reference for undergraduates, postgraduates, and researchers.



Automorphic Forms


Automorphic Forms
DOWNLOAD
Author : Anton Deitmar
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-08-29

Automorphic Forms written by Anton Deitmar and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-29 with Mathematics categories.


Automorphic forms are an important complex analytic tool in number theory and modern arithmetic geometry. They played for example a vital role in Andrew Wiles's proof of Fermat's Last Theorem. This text provides a concise introduction to the world of automorphic forms using two approaches: the classic elementary theory and the modern point of view of adeles and representation theory. The reader will learn the important aims and results of the theory by focussing on its essential aspects and restricting it to the 'base field' of rational numbers. Students interested for example in arithmetic geometry or number theory will find that this book provides an optimal and easily accessible introduction into this topic.



Modular Forms And Fermat S Last Theorem


Modular Forms And Fermat S Last Theorem
DOWNLOAD
Author : Gary Cornell
language : en
Publisher: Springer Science & Business Media
Release Date : 1997

Modular Forms And Fermat S Last Theorem written by Gary Cornell and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Mathematics categories.


A collection of expanded versions of lectures given at an instructional conference on number theory and arithmetic geometry held at Boston University. The purpose of the conference, and indeed this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof, and to explain how his result can be combined with Ribet's theorem and ideas of Frey and Serre to show, at long last, that Fermat's Last Theorem is true. The book begins with an overview of the complete proof, theory of elliptic curves, modular functions, modular curves, Galois cohomology, and finite group schemes. In recognition of the historical significance of Fermat's Last Theorem, the volume concludes by reflecting on the history of the problem, while placing Wiles' theorem into a more general Diophantine context suggesting future applications.



Traces Of Hecke Operators


Traces Of Hecke Operators
DOWNLOAD
Author : Andrew Knightly
language : en
Publisher: American Mathematical Soc.
Release Date : 2006

Traces Of Hecke Operators written by Andrew Knightly and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Mathematics categories.


The Fourier coefficients of modular forms are of widespread interest as an important source of arithmetic information. In many cases, these coefficients can be recovered from explicit knowledge of the traces of Hecke operators. The original trace formula for Hecke operators was given by Selberg in 1956. Many improvements were made in subsequent years, notably by Eichler and Hijikata. This book provides a comprehensive modern treatment of the Eichler-Selberg/Hijikata trace formulafor the traces of Hecke operators on spaces of holomorphic cusp forms of weight $\mathtt{k >2$ for congruence subgroups of $\operatorname{SL 2(\mathbf{Z )$. The first half of the text brings together the background from number theory and representation theory required for the computation. Thisincludes detailed discussions of modular forms, Hecke operators, adeles and ideles, structure theory for $\operatorname{GL 2(\mathbf{A )$, strong approximation, integration on locally compact groups, the Poisson summation formula, adelic zeta functions, basic representation theory for locally compact groups, the unitary representations of $\operatorname{GL 2(\mathbf{R )$, and the connection between classical cusp forms and their adelic counterparts on $\operatorname{GL 2(\mathbf{A )$. Thesecond half begins with a full development of the geometric side of the Arthur-Selberg trace formula for the group $\operatorname{GL 2(\mathbf{A )$. This leads to an expression for the trace of a Hecke operator, which is then computed explicitly. The exposition is virtually self-contained, withcomplete references for the occasional use of auxiliary results. The book concludes with several applications of the final formula.



Conformal Dimension


Conformal Dimension
DOWNLOAD
Author : John M. Mackay
language : en
Publisher: American Mathematical Soc.
Release Date : 2010

Conformal Dimension written by John M. Mackay and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Mathematics categories.


Conformal dimension measures the extent to which the Hausdorff dimension of a metric space can be lowered by quasisymmetric deformations. Introduced by Pansu in 1989, this concept has proved extremely fruitful in a diverse range of areas, including geometric function theory, conformal dynamics, and geometric group theory. This survey leads the reader from the definitions and basic theory through to active research applications in geometric function theory, Gromov hyperbolic geometry, and the dynamics of rational maps, amongst other areas. It reviews the theory of dimension in metric spaces and of deformations of metric spaces. It summarizes the basic tools for estimating conformal dimension and illustrates their application to concrete problems of independent interest. Numerous examples and proofs are provided. Working from basic definitions through to current research areas, this book can be used as a guide for graduate students interested in this field, or as a helpful survey for experts. Background needed for a potential reader of the book consists of a working knowledge of real and complex analysis on the level of first- and second-year graduate courses.



Complex Proofs Of Real Theorems


Complex Proofs Of Real Theorems
DOWNLOAD
Author : Peter D. Lax
language : en
Publisher: American Mathematical Soc.
Release Date : 2011-12-21

Complex Proofs Of Real Theorems written by Peter D. Lax and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-12-21 with Mathematics categories.


Complex Proofs of Real Theorems is an extended meditation on Hadamard's famous dictum, ``The shortest and best way between two truths of the real domain often passes through the imaginary one.'' Directed at an audience acquainted with analysis at the first year graduate level, it aims at illustrating how complex variables can be used to provide quick and efficient proofs of a wide variety of important results in such areas of analysis as approximation theory, operator theory, harmonic analysis, and complex dynamics. Topics discussed include weighted approximation on the line, Muntz's theorem, Toeplitz operators, Beurling's theorem on the invariant spaces of the shift operator, prediction theory, the Riesz convexity theorem, the Paley-Wiener theorem, the Titchmarsh convolution theorem, the Gleason-Kahane-Zelazko theorem, and the Fatou-Julia-Baker theorem. The discussion begins with the world's shortest proof of the fundamental theorem of algebra and concludes with Newman's almost effortless proof of the prime number theorem. Four brief appendices provide all necessary background in complex analysis beyond the standard first year graduate course. Lovers of analysis and beautiful proofs will read and reread this slim volume with pleasure and profit.