[PDF] Lie Groups Beyond An Introduction - eBooks Review

Lie Groups Beyond An Introduction


Lie Groups Beyond An Introduction
DOWNLOAD

Download Lie Groups Beyond An Introduction PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lie Groups Beyond An Introduction book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Lie Groups Beyond An Introduction


Lie Groups Beyond An Introduction
DOWNLOAD
Author : Anthony W. Knapp
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Lie Groups Beyond An Introduction written by Anthony W. Knapp and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.


Fifty years ago Claude Chevalley revolutionized Lie theory by pub lishing his classic Theory of Lie Groups I. Before his book Lie theory was a mixture of local and global results. As Chevalley put it, "This limitation was probably necessary as long as general topology was not yet sufficiently well elaborated to provide a solid base for a theory in the large. These days are now passed:' Indeed, they are passed because Chevalley's book changed matters. Chevalley made global Lie groups into the primary objects of study. In his third and fourth chapters he introduced the global notion of ana lytic subgroup, so that Lie subalgebras corresponded exactly to analytic subgroups. This correspondence is now taken as absolutely standard, and any introduction to general Lie groups has to have it at its core. Nowadays "local Lie groups" are a thing of the past; they arise only at one point in the development, and only until Chevalley's results have been stated and have eliminated the need for the local theory. But where does the theory go from this point? Fifty years after Cheval ley's book, there are clear topics: E. Cartan's completion ofW. Killing's work on classifying complex semisimple Lie algebras, the treatment of finite-dimensional representations of complex semisimple Lie algebras and compact Lie groups by Cartan and H. Weyl, the structure theory begun by Cartan for real semisimple Lie algebras and Lie groups, and harmonic analysis in the setting of semisimple groups as begun by Cartan and Weyl.



Lie Groups


Lie Groups
DOWNLOAD
Author : Daniel Bump
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-10-01

Lie Groups written by Daniel Bump and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-10-01 with Mathematics categories.


This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized to allow different paths through the material depending on one's interests. This second edition has substantial new material, including improved discussions of underlying principles, streamlining of some proofs, and many results and topics that were not in the first edition. For compact Lie groups, the book covers the Peter–Weyl theorem, Lie algebra, conjugacy of maximal tori, the Weyl group, roots and weights, Weyl character formula, the fundamental group and more. The book continues with the study of complex analytic groups and general noncompact Lie groups, covering the Bruhat decomposition, Coxeter groups, flag varieties, symmetric spaces, Satake diagrams, embeddings of Lie groups and spin. Other topics that are treated are symmetric function theory, the representation theory of the symmetric group, Frobenius–Schur duality and GL(n) × GL(m) duality with many applications including some in random matrix theory, branching rules, Toeplitz determinants, combinatorics of tableaux, Gelfand pairs, Hecke algebras, the "philosophy of cusp forms" and the cohomology of Grassmannians. An appendix introduces the reader to the use of Sage mathematical software for Lie group computations.



An Introduction To Lie Groups And Lie Algebras


An Introduction To Lie Groups And Lie Algebras
DOWNLOAD
Author : Alexander Kirillov, Jr
language : en
Publisher: Cambridge University Press
Release Date : 2017-06-30

An Introduction To Lie Groups And Lie Algebras written by Alexander Kirillov, Jr and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-30 with Mathematics categories.


This classic graduate text focuses on the study of semisimple Lie algebras, developing the necessary theory along the way. The material covered ranges from basic definitions of Lie groups to the classification of finite-dimensional representations of semisimple Lie algebras. Lie theory, in its own right, has become regarded as a classical branch of mathematics. Written in an informal style, this is a contemporary introduction to the subject which emphasizes the main concepts of the proofs and outlines the necessary technical details, allowing the material to be conveyed concisely. Based on a lecture course given by the author at the State University of New York at Stony Brook, the book includes numerous exercises and worked examples and is ideal for graduate courses on Lie groups and Lie algebras.



Complex Semisimple Lie Algebras


Complex Semisimple Lie Algebras
DOWNLOAD
Author : Jean-Pierre Serre
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14

Complex Semisimple Lie Algebras written by Jean-Pierre Serre and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.


These notes are a record of a course given in Algiers from lOth to 21st May, 1965. Their contents are as follows. The first two chapters are a summary, without proofs, of the general properties of nilpotent, solvable, and semisimple Lie algebras. These are well-known results, for which the reader can refer to, for example, Chapter I of Bourbaki or my Harvard notes. The theory of complex semisimple algebras occupies Chapters III and IV. The proofs of the main theorems are essentially complete; however, I have also found it useful to mention some complementary results without proof. These are indicated by an asterisk, and the proofs can be found in Bourbaki, Groupes et Algebres de Lie, Paris, Hermann, 1960-1975, Chapters IV-VIII. A final chapter shows, without proof, how to pass from Lie algebras to Lie groups (complex-and also compact). It is just an introduction, aimed at guiding the reader towards the topology of Lie groups and the theory of algebraic groups. I am happy to thank MM. Pierre Gigord and Daniel Lehmann, who wrote up a first draft of these notes, and also Mlle. Franr,:oise Pecha who was responsible for the typing of the manuscript.



Naive Lie Theory


Naive Lie Theory
DOWNLOAD
Author : John Stillwell
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-12-15

Naive Lie Theory written by John Stillwell and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-15 with Mathematics categories.


In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).



Lie Groups


Lie Groups
DOWNLOAD
Author : Harriet Suzanne Katcher Pollatsek
language : en
Publisher: MAA
Release Date : 2009-09-24

Lie Groups written by Harriet Suzanne Katcher Pollatsek and has been published by MAA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-09-24 with Mathematics categories.


This textbook is a complete introduction to Lie groups for undergraduate students. The only prerequisites are multi-variable calculus and linear algebra. The emphasis is placed on the algebraic ideas, with just enough analysis to define the tangent space and the differential and to make sense of the exponential map. This textbook works on the principle that students learn best when they are actively engaged. To this end nearly 200 problems are included in the text, ranging from the routine to the challenging level. Every chapter has a section called 'Putting the pieces together' in which all definitions and results are collected for reference and further reading is suggested.



Introduction To Lie Algebras And Representation Theory


Introduction To Lie Algebras And Representation Theory
DOWNLOAD
Author : JAMES HUMPHREYS
language : en
Publisher: Springer Science & Business Media
Release Date : 1994-10-27

Introduction To Lie Algebras And Representation Theory written by JAMES HUMPHREYS and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994-10-27 with Mathematics categories.


This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.



Analysis On Lie Groups With Polynomial Growth


Analysis On Lie Groups With Polynomial Growth
DOWNLOAD
Author : Nick Dungey
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Analysis On Lie Groups With Polynomial Growth written by Nick Dungey and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Analysis on Lie Groups with Polynomial Growth is the first book to present a method for examining the surprising connection between invariant differential operators and almost periodic operators on a suitable nilpotent Lie group. It deals with the theory of second-order, right invariant, elliptic operators on a large class of manifolds: Lie groups with polynomial growth. In systematically developing the analytic and algebraic background on Lie groups with polynomial growth, it is possible to describe the large time behavior for the semigroup generated by a complex second-order operator with the aid of homogenization theory and to present an asymptotic expansion. Further, the text goes beyond the classical homogenization theory by converting an analytical problem into an algebraic one. This work is aimed at graduate students as well as researchers in the above areas. Prerequisites include knowledge of basic results from semigroup theory and Lie group theory.



Lie Algebras Of Finite And Affine Type


Lie Algebras Of Finite And Affine Type
DOWNLOAD
Author : Roger William Carter
language : en
Publisher: Cambridge University Press
Release Date : 2005-10-27

Lie Algebras Of Finite And Affine Type written by Roger William Carter and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-10-27 with Mathematics categories.


This book provides a thorough but relaxed mathematical treatment of Lie algebras.



Lie Groups


Lie Groups
DOWNLOAD
Author : Wulf Rossmann
language : en
Publisher: OUP Oxford
Release Date : 2006

Lie Groups written by Wulf Rossmann and has been published by OUP Oxford this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Business & Economics categories.


Lie Groups is intended as an introduction to the theory of Lie groups and their representations at the advanced undergraduate or beginning graduate level. It covers the essentials of the subject starting from basic undergraduate mathematics. The correspondence between linear Lie groups and Lie algebras is developed in its local and global aspects. The classical groups are analysed in detail, first with elementary matrix methods, then with the help of the structural tools typical of the theory of semisimple groups, such as Cartan subgroups, roots, weights, and reflections. The fundamental groups of the classical groups are worked out as an application of these methods. Manifolds are introduced when needed, in connection with homogeneous spaces, and the elements of differential and integral calculus on manifolds are presented, with special emphasis on integration on groups and homogeneous spaces. Representation theory starts from first principles, such as Schur's lemma and its consequences, and proceeds from there to the Peter-Weyl theorem, Weyl's character formula, and the Borel-Weil theorem, all in the context of linear groups.