Lie Groups Differential Equations And Geometry

DOWNLOAD
Download Lie Groups Differential Equations And Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lie Groups Differential Equations And Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Applications Of Lie Groups To Differential Equations
DOWNLOAD
Author : Peter J. Olver
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Applications Of Lie Groups To Differential Equations written by Peter J. Olver and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.
Lie Groups And Algebras With Applications To Physics Geometry And Mechanics
DOWNLOAD
Author : D.H. Sattinger
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11
Lie Groups And Algebras With Applications To Physics Geometry And Mechanics written by D.H. Sattinger and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.
This book is intended as an introductory text on the subject of Lie groups and algebras and their role in various fields of mathematics and physics. It is written by and for researchers who are primarily analysts or physicists, not algebraists or geometers. Not that we have eschewed the algebraic and geo metric developments. But we wanted to present them in a concrete way and to show how the subject interacted with physics, geometry, and mechanics. These interactions are, of course, manifold; we have discussed many of them here-in particular, Riemannian geometry, elementary particle physics, sym metries of differential equations, completely integrable Hamiltonian systems, and spontaneous symmetry breaking. Much ofthe material we have treated is standard and widely available; but we have tried to steer a course between the descriptive approach such as found in Gilmore and Wybourne, and the abstract mathematical approach of Helgason or Jacobson. Gilmore and Wybourne address themselvesto the physics community whereas Helgason and Jacobson address themselves to the mathematical community. This book is an attempt to synthesize the two points of view and address both audiences simultaneously. We wanted to present the subject in a way which is at once intuitive, geometric, applications oriented, mathematically rigorous, and accessible to students and researchers without an extensive background in physics, algebra, or geometry.
Symmetry Methods For Differential Equations
DOWNLOAD
Author : Peter E. Hydon
language : en
Publisher: Cambridge University Press
Release Date : 2000-02-13
Symmetry Methods For Differential Equations written by Peter E. Hydon and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-02-13 with Mathematics categories.
A good working knowledge of symmetry methods is very valuable for those working with mathematical models. This book is a straightforward introduction to the subject for applied mathematicians, physicists, and engineers. The informal presentation uses many worked examples to illustrate the major symmetry methods. Written at a level suitable for postgraduates and advanced undergraduates, the text will enable readers to master the main techniques quickly and easily. The book contains some methods not previously published in a text, including those methods for obtaining discrete symmetries and integrating factors.
Lie Groups Differential Equations And Geometry
DOWNLOAD
Author : Giovanni Falcone
language : en
Publisher: Springer
Release Date : 2017-09-19
Lie Groups Differential Equations And Geometry written by Giovanni Falcone and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-19 with Mathematics categories.
This book collects a series of contributions addressing the various contexts in which the theory of Lie groups is applied. A preliminary chapter serves the reader both as a basic reference source and as an ongoing thread that runs through the subsequent chapters. From representation theory and Gerstenhaber algebras to control theory, from differential equations to Finsler geometry and Lepage manifolds, the book introduces young researchers in Mathematics to a wealth of different topics, encouraging a multidisciplinary approach to research. As such, it is suitable for students in doctoral courses, and will also benefit researchers who want to expand their field of interest.
Applications Of Lie Groups To Difference Equations
DOWNLOAD
Author : Vladimir Dorodnitsyn
language : en
Publisher: CRC Press
Release Date : 2010-12-01
Applications Of Lie Groups To Difference Equations written by Vladimir Dorodnitsyn and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-12-01 with Mathematics categories.
Intended for researchers, numerical analysts, and graduate students in various fields of applied mathematics, physics, mechanics, and engineering sciences, Applications of Lie Groups to Difference Equations is the first book to provide a systematic construction of invariant difference schemes for nonlinear differential equations. A guide to methods
Differential Geometry And Lie Groups
DOWNLOAD
Author : Jean Gallier
language : en
Publisher: Springer Nature
Release Date : 2020-08-18
Differential Geometry And Lie Groups written by Jean Gallier and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-18 with Mathematics categories.
This textbook explores advanced topics in differential geometry, chosen for their particular relevance to modern geometry processing. Analytic and algebraic perspectives augment core topics, with the authors taking care to motivate each new concept. Whether working toward theoretical or applied questions, readers will appreciate this accessible exploration of the mathematical concepts behind many modern applications. Beginning with an in-depth study of tensors and differential forms, the authors go on to explore a selection of topics that showcase these tools. An analytic theme unites the early chapters, which cover distributions, integration on manifolds and Lie groups, spherical harmonics, and operators on Riemannian manifolds. An exploration of bundles follows, from definitions to connections and curvature in vector bundles, culminating in a glimpse of Pontrjagin and Chern classes. The final chapter on Clifford algebras and Clifford groups draws the book to an algebraic conclusion, which can be seen as a generalized viewpoint of the quaternions. Differential Geometry and Lie Groups: A Second Course captures the mathematical theory needed for advanced study in differential geometry with a view to furthering geometry processing capabilities. Suited to classroom use or independent study, the text will appeal to students and professionals alike. A first course in differential geometry is assumed; the authors’ companion volume Differential Geometry and Lie Groups: A Computational Perspective provides the ideal preparation.
Lie Groups
DOWNLOAD
Author : J.J. Duistermaat
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Lie Groups written by J.J. Duistermaat and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This book is devoted to an exposition of the theory of finite-dimensional Lie groups and Lie algebras, which is a beautiful and central topic in modern mathematics. At the end of the nineteenth century this theory came to life in the works of Sophus Lie. It had its origins in Lie's idea of applying Galois theory to differential equations and in Klein's "Erlanger Programm" of treat ing symmetry groups as the fundamental objects in geometry. Lie's approach to many problems of analysis and geometry was mainly local, that is, valid in local coordinate systems only. At the beginning of the twentieth century E. Cartan and Weyl began a systematic treatment of the global aspects of Lie's theory. Since then this theory has ramified tremendously and now, as the twentieth century is coming to a close, its concepts and methods pervade mathematics and theoretical physics. Despite the plethora of books devoted to Lie groups and Lie algebras we feel there is justification for a text that puts emphasis on Lie's principal idea, namely, geometry treated by a blend of algebra and analysis. Lie groups are geometrical objects whose structure can be described conveniently in terms of group actions and fiber bundles. Therefore our point of view is mainly differential geometrical. We have made no attempt to discuss systematically the theory of infinite-dimensional Lie groups and Lie algebras, which is cur rently an active area of research. We now give a short description of the contents of each chapter.
Differential Geometry And Lie Groups For Physicists
DOWNLOAD
Author : Marián Fecko
language : en
Publisher: Cambridge University Press
Release Date : 2011-03-03
Differential Geometry And Lie Groups For Physicists written by Marián Fecko and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-03-03 with Science categories.
Differential geometry plays an increasingly important role in modern theoretical physics and applied mathematics. This textbook gives an introduction to geometrical topics useful in theoretical physics and applied mathematics, covering: manifolds, tensor fields, differential forms, connections, symplectic geometry, actions of Lie groups, bundles, spinors, and so on. Written in an informal style, the author places a strong emphasis on developing the understanding of the general theory through more than 1000 simple exercises, with complete solutions or detailed hints. The book will prepare readers for studying modern treatments of Lagrangian and Hamiltonian mechanics, electromagnetism, gauge fields, relativity and gravitation. Differential Geometry and Lie Groups for Physicists is well suited for courses in physics, mathematics and engineering for advanced undergraduate or graduate students, and can also be used for active self-study. The required mathematical background knowledge does not go beyond the level of standard introductory undergraduate mathematics courses.
Stratified Lie Groups And Potential Theory For Their Sub Laplacians
DOWNLOAD
Author : Andrea Bonfiglioli
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-08-24
Stratified Lie Groups And Potential Theory For Their Sub Laplacians written by Andrea Bonfiglioli and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-24 with Mathematics categories.
This book provides an extensive treatment of Potential Theory for sub-Laplacians on stratified Lie groups. It also provides a largely self-contained presentation of stratified Lie groups, and of their Lie algebra of left-invariant vector fields. The presentation is accessible to graduate students and requires no specialized knowledge in algebra or differential geometry.
Foundations Of Differentiable Manifolds And Lie Groups
DOWNLOAD
Author : Frank W. Warner
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11
Foundations Of Differentiable Manifolds And Lie Groups written by Frank W. Warner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.
Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. It includes differentiable manifolds, tensors and differentiable forms. Lie groups and homogenous spaces, integration on manifolds, and in addition provides a proof of the de Rham theorem via sheaf cohomology theory, and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem. Those interested in any of the diverse areas of mathematics requiring the notion of a differentiable manifold will find this beginning graduate-level text extremely useful.