Linear Models And Generalizations

DOWNLOAD
Download Linear Models And Generalizations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Linear Models And Generalizations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Linear Models And Generalizations
DOWNLOAD
Author : C. Radhakrishna Rao
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-10-15
Linear Models And Generalizations written by C. Radhakrishna Rao and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-10-15 with Mathematics categories.
Thebookisbasedonseveralyearsofexperienceofbothauthorsinteaching linear models at various levels. It gives an up-to-date account of the theory and applications of linear models. The book can be used as a text for courses in statistics at the graduate level and as an accompanying text for courses in other areas. Some of the highlights in this book are as follows. A relatively extensive chapter on matrix theory (Appendix A) provides the necessary tools for proving theorems discussed in the text and o?ers a selectionofclassicalandmodernalgebraicresultsthatareusefulinresearch work in econometrics, engineering, and optimization theory. The matrix theory of the last ten years has produced a series of fundamental results aboutthe de?niteness ofmatrices,especially forthe di?erences ofmatrices, which enable superiority comparisons of two biased estimates to be made for the ?rst time. We have attempted to provide a uni?ed theory of inference from linear models with minimal assumptions. Besides the usual least-squares theory, alternative methods of estimation and testing based on convex loss fu- tions and general estimating equations are discussed. Special emphasis is given to sensitivity analysis and model selection. A special chapter is devoted to the analysis of categorical data based on logit, loglinear, and logistic regression models. The material covered, theoretical discussion, and a variety of practical applications will be useful not only to students but also to researchers and consultants in statistics.
Generalized Linear Models Second Edition
DOWNLOAD
Author : P. McCullagh
language : en
Publisher: CRC Press
Release Date : 1989-08-01
Generalized Linear Models Second Edition written by P. McCullagh and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1989-08-01 with Mathematics categories.
The success of the first edition of Generalized Linear Models led to the updated Second Edition, which continues to provide a definitive unified, treatment of methods for the analysis of diverse types of data. Today, it remains popular for its clarity, richness of content and direct relevance to agricultural, biological, health, engineering, and other applications. The authors focus on examining the way a response variable depends on a combination of explanatory variables, treatment, and classification variables. They give particular emphasis to the important case where the dependence occurs through some unknown, linear combination of the explanatory variables. The Second Edition includes topics added to the core of the first edition, including conditional and marginal likelihood methods, estimating equations, and models for dispersion effects and components of dispersion. The discussion of other topics-log-linear and related models, log odds-ratio regression models, multinomial response models, inverse linear and related models, quasi-likelihood functions, and model checking-was expanded and incorporates significant revisions. Comprehension of the material requires simply a knowledge of matrix theory and the basic ideas of probability theory, but for the most part, the book is self-contained. Therefore, with its worked examples, plentiful exercises, and topics of direct use to researchers in many disciplines, Generalized Linear Models serves as ideal text, self-study guide, and reference.
Linear Models In Statistics
DOWNLOAD
Author : Alvin C. Rencher
language : en
Publisher: John Wiley & Sons
Release Date : 2008-01-07
Linear Models In Statistics written by Alvin C. Rencher and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-01-07 with Mathematics categories.
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
Linear Models
DOWNLOAD
Author : Calyampudi R. Rao
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-04-06
Linear Models written by Calyampudi R. Rao and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-06 with Mathematics categories.
An up-to-date account of the theory and applications of linear models, for use as a textbook in statistics at graduate level as well as an accompanying text for other courses in which linear models play a part. The authors present a unified theory of inference from linear models with minimal assumptions, not only through least squares theory, but also using alternative methods of estimation and testing based on convex loss functions and general estimating equations. Highlights include: - a special emphasis on sensitivity analysis and model selection; - a chapter devoted to the analysis of categorical data based on logic, loglinear, and logistic regression models; - a chapter devoted to incomplete data sets; - an extensive appendix on matrix theory; - a chapter devoted to the analysis of categorical data based on a unified presentation of generalized linear models including GEE-methods for correlated response; - a chapter devoted to incomplete data sets including regression diagnostics to identify Non-MCAR-processes The material covered is thus invaluable not only to graduates, but also to researchers and consultants in statistics.
Generalized Linear Models
DOWNLOAD
Author : P. McCullagh
language : en
Publisher: Routledge
Release Date : 2019-01-22
Generalized Linear Models written by P. McCullagh and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-22 with Mathematics categories.
The success of the first edition of Generalized Linear Models led to the updated Second Edition, which continues to provide a definitive unified, treatment of methods for the analysis of diverse types of data. Today, it remains popular for its clarity, richness of content and direct relevance to agricultural, biological, health, engineering, and ot
Multivariate General Linear Models
DOWNLOAD
Author : Richard F. Haase
language : en
Publisher: SAGE
Release Date : 2011-11-23
Multivariate General Linear Models written by Richard F. Haase and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-11-23 with Mathematics categories.
This title provides an integrated introduction to multivariate multiple regression analysis (MMR) and multivariate analysis of variance (MANOVA). It defines the key steps in analyzing linear model data and introduces multivariate linear model analysis as a generalization of the univariate model. Richard F. Haase focuses on multivariate measures of association for four common multivariate test statistics, presents a flexible method for testing hypotheses on models, and emphasizes the multivariate procedures attributable to Wilks, Pillai, Hotelling, and Roy.
Generalized Linear Models And Extensions Second Edition
DOWNLOAD
Author : James W. Hardin
language : en
Publisher: Stata Press
Release Date : 2007
Generalized Linear Models And Extensions Second Edition written by James W. Hardin and has been published by Stata Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Computers categories.
Deftly balancing theory and application, this book stands out in its coverage of the derivation of the GLM families and their foremost links. This edition has new sections on discrete response models, including zero-truncated, zero-inflated, censored, and hurdle count models, as well as heterogeneous negative binomial, and more.
Applying Generalized Linear Models
DOWNLOAD
Author : James K. Lindsey
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-01-15
Applying Generalized Linear Models written by James K. Lindsey and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-01-15 with Mathematics categories.
Applying Generalized Linear Models describes how generalized linear modelling procedures can be used for statistical modelling in many different fields, without becoming lost in problems of statistical inference. Many students, even in relatively advanced statistics courses, do not have an overview whereby they can see that the three areas - linear normal, categorical, and survival models - have much in common. The author shows the unity of many of the commonly used models and provides the reader with a taste of many different areas, such as survival models, time series, and spatial analysis. This book should appeal to applied statisticians and to scientists with a basic grounding in modern statistics. With the many exercises included at the ends of chapters, it will be an excellent text for teaching the fundamental uses of statistical modelling. The reader is assumed to have knowledge of basic statistical principles, whether from a Bayesian, frequentist, or direct likelihood point of view, and should be familiar at least with the analysis of the simpler normal linear models, regression and ANOVA. The author is professor in the biostatistics department at Limburgs University, Diepenbeek, in the social science department at the University of Liège, and in medical statistics at DeMontfort University, Leicester. He is the author of nine other books.
Linear Models And Generalizations
DOWNLOAD
Author : Calyampudi R. Rao
language : en
Publisher:
Release Date : 2008-08-12
Linear Models And Generalizations written by Calyampudi R. Rao and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-08-12 with categories.