[PDF] Local Feature Based Representation For Object Tracking - eBooks Review

Local Feature Based Representation For Object Tracking


Local Feature Based Representation For Object Tracking
DOWNLOAD

Download Local Feature Based Representation For Object Tracking PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Local Feature Based Representation For Object Tracking book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Local Feature Based Representation For Object Tracking


Local Feature Based Representation For Object Tracking
DOWNLOAD
Author : Feng Tang
language : en
Publisher:
Release Date : 2007

Local Feature Based Representation For Object Tracking written by Feng Tang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with categories.




Object Representation In Local Feature Spaces


Object Representation In Local Feature Spaces
DOWNLOAD
Author : Antoine Tran
language : en
Publisher:
Release Date : 2017

Object Representation In Local Feature Spaces written by Antoine Tran and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with categories.


Visual representation is a fundamental problem in computer vision. The aim is to reduce the information to the strict necessary for a query task. Many types of representation exist, like color features (histograms, color attributes...), shape ones (derivatives, keypoints...) or filterbanks.Low-level (and local) features are fast to compute. Their power of representation are limited, but their genericity have an interest for autonomous or multi-task systems, as higher level ones derivate from them. We aim to build, then study impact of low-level and local feature spaces (color and derivatives only) for two tasks: generic object tracking, requiring features robust to object and environment's aspect changes over the time; object detection, for which the representation should describe object class and cope with intra-class variations.Then, rather than using global object descriptors, we use entirely local features and statisticals mecanisms to estimate their distribution (histograms) and their co-occurrences (Generalized Hough Transform).The Generalized Hough Transform (GHT), created for detection of any shape, consists in building a codebook, originally indexed by gradient orientation, then to diverse features, modeling an object, a class. As we work on local features, we aim to remain close to the original GHT.In tracking, after presenting preliminary works combining the GHT with a particle filter (using color histograms), we present a lighter and fast (100 fps) tracker, more accurate and robust.We present a qualitative evaluation and study the impact of used features (color space, spatial derivative formulation).In detection, we used Gall's Hough Forest. We aim to reduce Gall's feature space and discard HOG features, to keep only derivatives and color ones.To compensate the reduction, we enhanced two steps: the support of local descriptors (patches) are partially chosen using a geometrical measure, and node training is done by using a specific probability map based on patches used at this step.With reduced feature space, the detector is less accurate than with Gall's feature space, but for the same training time, our works lead to identical results, but with higher stability and then better repeatability.



Visual Object Recognition


Visual Object Recognition
DOWNLOAD
Author : Kristen Grauman
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2011

Visual Object Recognition written by Kristen Grauman and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Computers categories.


The visual recognition problem is central to computer vision research. From robotics to information retrieval, many desired applications demand the ability to identify and localize categories, places, and objects. This tutorial overviews computer vision algorithms for visual object recognition and image classification. We introduce primary representations and learning approaches, with an emphasis on recent advances in the field. The target audience consists of researchers or students working in AI, robotics, or vision who would like to understand what methods and representations are available for these problems. This lecture summarizes what is and isn't possible to do reliably today, and overviews key concepts that could be employed in systems requiring visual categorization. Table of Contents: Introduction / Overview: Recognition of Specific Objects / Local Features: Detection and Description / Matching Local Features / Geometric Verification of Matched Features / Example Systems: Specific-Object Recognition / Overview: Recognition of Generic Object Categories / Representations for Object Categories / Generic Object Detection: Finding and Scoring Candidates / Learning Generic Object Category Models / Example Systems: Generic Object Recognition / Other Considerations and Current Challenges / Conclusions



Online Visual Tracking


Online Visual Tracking
DOWNLOAD
Author : Huchuan Lu
language : en
Publisher: Springer
Release Date : 2019-05-30

Online Visual Tracking written by Huchuan Lu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-30 with Computers categories.


This book presents the state of the art in online visual tracking, including the motivations, practical algorithms, and experimental evaluations. Visual tracking remains a highly active area of research in Computer Vision and the performance under complex scenarios has substantially improved, driven by the high demand in connection with real-world applications and the recent advances in machine learning. A large variety of new algorithms have been proposed in the literature over the last two decades, with mixed success. Chapters 1 to 6 introduce readers to tracking methods based on online learning algorithms, including sparse representation, dictionary learning, hashing codes, local model, and model fusion. In Chapter 7, visual tracking is formulated as a foreground/background segmentation problem, and tracking methods based on superpixels and end-to-end deep networks are presented. In turn, Chapters 8 and 9 introduce the cutting-edge tracking methods based on correlation filter and deep learning. Chapter 10 summarizes the book and points out potential future research directions for visual tracking. The book is self-contained and suited for all researchers, professionals and postgraduate students working in the fields of computer vision, pattern recognition, and machine learning. It will help these readers grasp the insights provided by cutting-edge research, and benefit from the practical techniques available for designing effective visual tracking algorithms. Further, the source codes or results of most algorithms in the book are provided at an accompanying website.



Visual Object Tracking With Deep Neural Networks


Visual Object Tracking With Deep Neural Networks
DOWNLOAD
Author : Pier Luigi Mazzeo
language : en
Publisher: BoD – Books on Demand
Release Date : 2019-12-18

Visual Object Tracking With Deep Neural Networks written by Pier Luigi Mazzeo and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-18 with Computers categories.


Visual object tracking (VOT) and face recognition (FR) are essential tasks in computer vision with various real-world applications including human-computer interaction, autonomous vehicles, robotics, motion-based recognition, video indexing, surveillance and security. This book presents the state-of-the-art and new algorithms, methods, and systems of these research fields by using deep learning. It is organized into nine chapters across three sections. Section I discusses object detection and tracking ideas and algorithms; Section II examines applications based on re-identification challenges; and Section III presents applications based on FR research.



Visual Tracking Algorithms Using Different Object Representation Schemes


Visual Tracking Algorithms Using Different Object Representation Schemes
DOWNLOAD
Author : Shreyamsha Kumar Bidare Kantharajappa
language : en
Publisher:
Release Date : 2019

Visual Tracking Algorithms Using Different Object Representation Schemes written by Shreyamsha Kumar Bidare Kantharajappa and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.


Visual tracking, being one of the fundamental, most important and challenging areas in computer vision, has attracted much attention in the research community during the past decade due to its broad range of real-life applications. Even after three decades of research, it still remains a challenging problem in view of the complexities involved in the target searching due to intrinsic and extrinsic appearance variations of the object. The existing trackers fail to track the object when there are considerable amount of object appearance variations and when the object undergoes severe occlusion, scale change, out-of-plane rotation, motion blur, fast motion, in-plane rotation, out-of-view and illumination variation either individually or simultaneously. In order to have a reliable and improved tracking performance, the appearance variations should be handled carefully such that the appearance model should adapt to the intrinsic appearance variations and be robust enough for extrinsic appearance variations. The objective of this thesis is to develop visual object tracking algorithms by addressing the deficiencies of the existing algorithms to enhance the tracking performance by investigating the use of different object representation schemes to model the object appearance and then devising mechanisms to update the observation models. A tracking algorithm based on the global appearance model using robust coding and its collaboration with a local model is proposed. The global PCA subspace is used to model the global appearance of the object, and the optimum PCA basis coefficients and the global weight matrix are estimated by developing an iteratively reweighted robust coding (IRRC) technique. This global model is collaborated with the local model to exploit their individual merits. Global and local robust coding distances are introduced to find the candidate sample having similar appearance as that of the reconstructed sample from the subspace, and these distances are used to define the observation likelihood. A robust occlusion map generation scheme and a mechanism to update both the global and local observation models are developed. Quantitative and qualitative performance evaluations on OTB-50 and VOT2016, two popular benchmark datasets, demonstrate that the proposed algorithm with histogram of oriented gradient (HOG) features generally performs better than the state-of-the-art methods considered do. In spite of its good performance, there is a need to improve the tracking performance in some of the challenging attributes of OTB-50 and VOT2016. A second tracking algorithm is developed to provide an improved performance in situations for the above mentioned challenging attributes. The algorithms is designed based on a structural local 2DDCT sparse appearance model and an occlusion handling mechanism. In a structural local 2DDCT sparse appearance model, the energy compaction property of the transform is exploited to reduce the size of the dictionary as well as that of the candidate samples in the object representation so that the computational cost of the l_1-minimization used could be reduced. This strategy is in contrast to the existing models that use raw pixels. A holistic image reconstruction procedure is presented from the overlapped local patches that are obtained from the dictionary and the sparse codes, and then the reconstructed holistic image is used for robust occlusion detection and occlusion map generation. The occlusion map thus obtained is used for developing a novel observation model update mechanism to avoid the model degradation. A patch occlusion ratio is employed in the calculation of the confidence score to improve the tracking performance. Quantitative and qualitative performance evaluations on the two above mentioned benchmark datasets demonstrate that this second proposed tracking algorithm generally performs better than several state-of-the-art methods and the first proposed tracking method do. Despite the improved performance of this second proposed tracking algorithm, there are still some challenging attributes of OTB-50 and of VOT2016 for which the performance needs to be improved. Finally, a third tracking algorithm is proposed by developing a scheme for collaboration between the discriminative and generative appearance models. The discriminative model is explored to estimate the position of the target and a new generative model is used to find the remaining affine parameters of the target. In the generative model, robust coding is extended to two dimensions and employed in the bilateral two dimensional PCA (2DPCA) reconstruction procedure to handle the non-Gaussian or non-Laplacian residuals by developing an IRRC technique. A 2D robust coding distance is introduced to differentiate the candidate sample from the one reconstructed from the subspace and used to compute the observation likelihood in the generative model. A method of generating a robust occlusion map from the weights obtained during the IRRC technique and a novel update mechanism of the observation model for both the kernelized correlation filters and the bilateral 2DPCA subspace are developed. Quantitative and qualitative performance evaluations on the two datasets demonstrate that this algorithm with HOG features generally outperforms the state-of-the-art methods and the other two proposed algorithms for most of the challenging attributes.



Feature Based Probabilistic Data Association For Video Based Multi Object Tracking


Feature Based Probabilistic Data Association For Video Based Multi Object Tracking
DOWNLOAD
Author : Grinberg, Michael
language : en
Publisher: KIT Scientific Publishing
Release Date : 2018-08-10

Feature Based Probabilistic Data Association For Video Based Multi Object Tracking written by Grinberg, Michael and has been published by KIT Scientific Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-10 with categories.




Object Detection And Tracking Using A Parts Based Approach


Object Detection And Tracking Using A Parts Based Approach
DOWNLOAD
Author : Daniel S. Clark
language : en
Publisher:
Release Date : 2005

Object Detection And Tracking Using A Parts Based Approach written by Daniel S. Clark and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Automatic tracking categories.


"One of the main goals of artificial intelligence is to allow computers to understand the world around them. As humans we extract a large amount of knowledge about the world from our visual perception, and the field of computer vision is determined to give computers access to this same wealth of knowledge. One of the fundamental steps in understanding the world is finding specific objects within our field of view, and the related task of following these objects as they move. In this thesis the Implicit Shape Model algorithm, a local feature-based object detection algorithm, is implemented and used to develop an appearance model and object tracking algorithm based on it. This algorithm is very robust to intraclass variation, and can successfully track objects when both occlusion and non-stationary backgrounds are present. The usefulness of the proposed appearance model is analyzed, and results of the algorithm on real video sequences are presented. Several enhancements to the method are also proposed, and performance in terms of recall and precision is analyzed"--Abstract.



Feature Based Representations For Mid And High Level Vision


Feature Based Representations For Mid And High Level Vision
DOWNLOAD
Author : Tang Feng
language : en
Publisher:
Release Date : 2008

Feature Based Representations For Mid And High Level Vision written by Tang Feng and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with categories.




Visual Object Tracking In Dynamic Scenes


Visual Object Tracking In Dynamic Scenes
DOWNLOAD
Author : Mohamed Hamed Abdelpakey
language : en
Publisher:
Release Date : 2021

Visual Object Tracking In Dynamic Scenes written by Mohamed Hamed Abdelpakey and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.


Visual object tracking is a fundamental task in the field computer vision. Visual object tracking is widely used in numerous applications which include, but are not limited to video surveillance, image understanding, robotics, and human-computer interaction. In essence, visual object tracking is the problem of estimating the states/trajectory of the object of interest over time. Unlike other tasks such as object detection where the number of classes/categories are defined beforehand, the only available information of the object of interest is at the first frame. Even though, Deep Learning (DL) has revolutionised most computer vision tasks, visual object tracking still imposes several challenges. The nature of visual object tracking task is stochastic, where no prior-knowledge is available about the object of interest during the training or testing/inference. Moreover, visual object tracking is a class-agnostic task, as opposed object detection and segmentation tasks. In this thesis, the main objective is to develop and advance the visual object trackers using novel designs of deep learning frameworks and mathematical formulations. To take advantage of different trackers, a novel framework is developed to track moving objects based on a composite framework and a reporter mechanism. The composite framework has built-in trackers and user-defined trackers to track the object of interest. The framework contains a module to calculate the robustness for each tracker and a reporter mechanism serves as a recovery mechanism if trackers fail to locate the object of interest. Different trackers may fail to track the object of interest, thus, a more robust framework based on Siamese network architecture, namely DensSiam, is proposed to use the concept of dense layers and connects each dense layer in the network to all layers in a feed-forward fashion with a similarity-learning function. DensSiam also includes a Self-Attention mechanism to force the network to pay more attention to non-local features during offline training. Generally, Siamese trackers do not fully utilize semantic and objectness information from pre-trained networks that have been trained on an image classification task. To solve this problem a novel architecture design is proposed , dubbed DomainSiam, to learn a Domain-Aware that fully utilizes semantic and objectness information while producing a class-agnostic track using a ridge regression network. Moreover, to reduce the sparsity problem, we solve the ridge regression problem with a differentiable weighted-dynamic loss function. Siamese trackers have high speed and work in real-time, however, they lack high accuracy. To overcome this challenge, a novel dynamic policy gradient Agent-Environment architecture with Siamese network (DP-Siam) is proposed to train the tracker to increase the accuracy and the expected average overlap while running in real-time. DP-Siam is trained offline with reinforcement learning to produce a continuous action that predicts the optimal object location. One of the common design block in most object trackers in the literature is the backbone network, where the backbone network is trained in the feature space. To design a backbone network that maps from feature space to another space (i.e., joint-nullspace) and more suitable for object tracking and classification, a novel framework is proposed. The new framework is called NullSpaceNet has a clear interpretation for the feature representation and the features in this space are more separable. NullSpaceNet is utilized in object tracking by regularizing the discriminative joint-nullspace backbone network. The novel tracker is called NullSpaceRDAR, and encourages the network to have a representation for the target-specific information for the object of interest in the joint-nullspace. In contrast to feature space where objects from a specific class are categorized into one category however, it is insensitive to intra-class variations. Furthermore, we use the NullSpaceNet backbone to learn a tracker, dubbed NullSpaceRDAR, with a regularized discriminative joint-nullspace backbone network that is specifically designed for object tracking. In the regularized discriminative joint-nullspace, the features from the same target-specific are collapsed into one point in the joint-null space and different targetspecific features are collapsed into different points in the joint-nullspace. Consequently, the joint-nullspace forces the network to be sensitive to the variations of the object from the same class (intra-class variations). Moreover, a dynamic adaptive loss function is proposed to select the suitable loss function from a super-set family of losses based on the training data to make NullSpaceRDAR more robust to different challenges.