Low Complexity Mimo Detection With Bound Constraint Semidefinite Relaxation For 16 16 Mimo Communications

DOWNLOAD
Download Low Complexity Mimo Detection With Bound Constraint Semidefinite Relaxation For 16 16 Mimo Communications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Low Complexity Mimo Detection With Bound Constraint Semidefinite Relaxation For 16 16 Mimo Communications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Low Complexity Mimo Detection With Bound Constraint Semidefinite Relaxation For 16 16 Mimo Communications
DOWNLOAD
Author : 朱彥昀
language : zh-CN
Publisher:
Release Date : 2012
Low Complexity Mimo Detection With Bound Constraint Semidefinite Relaxation For 16 16 Mimo Communications written by 朱彥昀 and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with categories.
Convex Optimization For Signal Processing And Communications
DOWNLOAD
Author : Chong-Yung Chi
language : en
Publisher: CRC Press
Release Date : 2017-01-24
Convex Optimization For Signal Processing And Communications written by Chong-Yung Chi and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-24 with Technology & Engineering categories.
Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications provides fundamental background knowledge of convex optimization, while striking a balance between mathematical theory and applications in signal processing and communications. In addition to comprehensive proofs and perspective interpretations for core convex optimization theory, this book also provides many insightful figures, remarks, illustrative examples, and guided journeys from theory to cutting-edge research explorations, for efficient and in-depth learning, especially for engineering students and professionals. With the powerful convex optimization theory and tools, this book provides you with a new degree of freedom and the capability of solving challenging real-world scientific and engineering problems.
Large Mimo Systems
DOWNLOAD
Author : A. Chockalingam
language : en
Publisher: Cambridge University Press
Release Date : 2014-02-06
Large Mimo Systems written by A. Chockalingam and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-02-06 with Computers categories.
This exclusive coverage of the opportunities, technological challenges, solutions, and state of the art of large MIMO systems provides an in-depth discussion of algorithms for large MIMO signal processing, suited for large MIMO signal detection, precoding and LDPC code designs. An ideal resource for researchers, designers, developers and practitioners in wireless communications.
Practical Optimization
DOWNLOAD
Author : Andreas Antoniou
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-12-14
Practical Optimization written by Andreas Antoniou and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-12-14 with Computers categories.
Practical Optimization: Algorithms and Engineering Applications provides a hands-on treatment of the subject of optimization. A comprehensive set of problems and exercises makes the book suitable for use in one or two semesters of a first-year graduate course or an advanced undergraduate course. Each half of the book contains a full semester’s worth of complementary yet stand-alone material. The practical orientation of the topics chosen and a wealth of useful examples also make the book suitable for practitioners in the field. Advancements in the efficiency of digital computers and the evolution of reliable software for numerical computation during the past three decades have led to a rapid growth in the theory, methods, and algorithms of numerical optimization. This body of knowledge has motivated widespread applications of optimization methods in many disciplines, e.g., engineering, business, and science, and has subsequently led to problem solutions that were considered intractable not too long ago.
Mimo Transceiver Design Via Majorization Theory
DOWNLOAD
Author : Daniel P. Palomar
language : en
Publisher: Now Publishers Inc
Release Date : 2007
Mimo Transceiver Design Via Majorization Theory written by Daniel P. Palomar and has been published by Now Publishers Inc this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Technology & Engineering categories.
MIMO Transceiver Design via Majorization Theory presents an up-to-date unified mathematical framework for the design of point-to-point MIMO transceivers with channel state information (CSI) at both sides of the link according to an arbitrary cost function as a measure of the system performance.
Robust Adaptive Beamforming
DOWNLOAD
Author : Jian Li
language : en
Publisher: John Wiley & Sons
Release Date : 2005-10-10
Robust Adaptive Beamforming written by Jian Li and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-10-10 with Technology & Engineering categories.
The latest research and developments in robust adaptivebeamforming Recent work has made great strides toward devising robust adaptivebeamformers that vastly improve signal strength against backgroundnoise and directional interference. This dynamic technology hasdiverse applications, including radar, sonar, acoustics, astronomy,seismology, communications, and medical imaging. There are alsoexciting emerging applications such as smart antennas for wirelesscommunications, handheld ultrasound imaging systems, anddirectional hearing aids. Robust Adaptive Beamforming compiles the theories and work ofleading researchers investigating various approaches in onecomprehensive volume. Unlike previous efforts, these pioneeringstudies are based on theories that use an uncertainty set of thearray steering vector. The researchers define their theories,explain their methodologies, and present their conclusions. Methodspresented include: * Coupling the standard Capon beamformers with a spherical orellipsoidal uncertainty set of the array steering vector * Diagonal loading for finite sample size beamforming * Mean-squared error beamforming for signal estimation * Constant modulus beamforming * Robust wideband beamforming using a steered adaptive beamformerto adapt the weight vector within a generalized sidelobe cancellerformulation Robust Adaptive Beamforming provides a truly up-to-date resourceand reference for engineers, researchers, and graduate students inthis promising, rapidly expanding field.
Rf Imperfections In High Rate Wireless Systems
DOWNLOAD
Author : Tim Schenk
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-01-29
Rf Imperfections In High Rate Wireless Systems written by Tim Schenk and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-01-29 with Technology & Engineering categories.
This is one of the first books on the emerging research topic of digital compensation of RF imperfections. The book presents a new multidisciplinary vision on the design of wireless communication systems. In this approach the imperfections of the RF front-ends are accepted and digital signal processing algorithms are designed to suppress their impact on system performance. The book focuses on multiple-antenna orthogonal frequency division multiplexing (MIMO OFDM).
Wireless Infrared Communications
DOWNLOAD
Author : John R. Barry
language : en
Publisher: Springer Science & Business Media
Release Date : 1994-08-31
Wireless Infrared Communications written by John R. Barry and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994-08-31 with Technology & Engineering categories.
The demand for wireless access to network services is growing in virtually all communications and computing applications. Once accustomed to unteathered opera tion, users resent being tied to a desk or a fixed location, but will endure it when there is some substantial benefit, such as higher resolution or bandwidth. Recent technolog ical advances, however, such as the scaling of VLSI, the development of low-power circuit design techniques and architectures, increasing battery energy capacity, and advanced displays, are rapidly improving the capabilities of wireless devices. Many of the technological advances contributing to this revolution pertain to the wireless medium itself. There are two viable media: radio and optical. In radio, spread-spectrum techniques allow different users and services to coexist in the same bandwidth, and new microwave frequencies with plentiful bandwidth become viable as the speed of the supporting low-cost electronics increases. Radio has the advantage of being available ubiquitously indoors and outdoors, with the possibility of a seam less system infrastructure that allows users to move between the two. There are unan swered (but likely to be benign) biological effects of microwave radiation at higher power densities. Optical communications is enhanced by advances in photonic devices, such as semiconductor lasers and detectors. Optical is primarily an indoor technology - where it need not compete with sunlight - and offers advantages such as the immediate availability of a broad bandwidth without the need for regulatory approval.
Mimo Radar Signal Processing
DOWNLOAD
Author : Jian Li
language : en
Publisher: John Wiley & Sons
Release Date : 2008-10-10
Mimo Radar Signal Processing written by Jian Li and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-10-10 with Science categories.
The first book to present a systematic and coherent picture of MIMO radars Due to its potential to improve target detection and discrimination capability, Multiple-Input and Multiple-Output (MIMO) radar has generated significant attention and widespread interest in academia, industry, government labs, and funding agencies. This important new work fills the need for a comprehensive treatment of this emerging field. Edited and authored by leading researchers in the field of MIMO radar research, this book introduces recent developments in the area of MIMO radar to stimulate new concepts, theories, and applications of the topic, and to foster further cross-fertilization of ideas with MIMO communications. Topical coverage includes: Adaptive MIMO radar Beampattern analysis and optimization for MIMO radar MIMO radar for target detection, parameter estimation, tracking,association, and recognition MIMO radar prototypes and measurements Space-time codes for MIMO radar Statistical MIMO radar Waveform design for MIMO radar Written in an easy-to-follow tutorial style, MIMO Radar Signal Processing serves as an excellent course book for graduate students and a valuable reference for researchers in academia and industry.
Cell Free Massive Mimo
DOWNLOAD
Author : Giovanni Interdonato
language : it
Publisher: Linköping University Electronic Press
Release Date : 2020-09-09
Cell Free Massive Mimo written by Giovanni Interdonato and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-09 with categories.
The fifth generation of mobile communication systems (5G) is nowadays a reality. 5G networks are been deployed all over the world, and the first 5G-capable devices (e.g., smartphones, tablets, wearable, etc.) are already commercially available. 5G systems provide unprecedented levels of connectivity and quality of service (QoS) to cope with the incessant growth in the number of connected devices and the huge increase in data-rate demand. Massive MIMO (multiple-input multiple-output) technology plays a key role in 5G systems. The underlying principle of this technology is the use of a large number of co-located antennas at the base station, which coherently transmit/receive signals to/from multiple users. This signal co-processing at multiple antennas leads to manifold benefits: array gain, spatial diversity and spatial user multiplexing. These elements enable to meet the QoS requirements established for the 5G systems. The major bottleneck of massive MIMO systems as well as of any cellular network is the inter-cell interference, which affects significantly the cell-edge users, whose performance is already degraded by the path attenuation. To overcome these limitations and provide uniformly excellent service to all the users we need a more radical approach: we need to challenge the cellular paradigm. In this regard, cell-free massive MIMO constitutes the paradigm shift. In the cell-free paradigm, it is not the base station surrounded by the users, but rather it is each user being surrounded by smaller, simpler, serving base stations referred to as access points (APs). In such a system, each user experiences being in the cell-center, and it does not experience any cell boundaries. Hence, the terminology cell-free. As a result, users are not affected by inter-cell interference, and the path attenuation is significantly reduced due to the presence of many APs in their proximity. This leads to impressive performance. Although appealing from the performance viewpoint, the designing and implementation of such a distributed massive MIMO system is a challenging task, and it is the object of this thesis. More specifically, in this thesis we study: Paper A) The large potential of this promising technology in realistic indoor/outdoor scenarios while also addressing practical deployment issues, such as clock synchronization among APs, and cost-efficient implementations. We provide an extensive description of a cell-free massive MIMO system, emphasizing strengths and weaknesses, and pointing out differences and similarities with existing distributed multiple antenna systems, such as Coordinated MultiPoint (CoMP). Paper B) How to preserve the scalability of the system, by proposing a solution related to data processing, network topology and power control. We consider a realistic scenario where multiple central processing units serve disjoint subsets of APs, and compare the spectral efficiency provided by the proposed scalable framework with the canonical cell-free massive MIMO and CoMP. Paper C) How to improve the spectral efficiency (SE) in the downlink (DL), by devising two distributed precoding schemes, referred to as local partial zero-forcing (ZF) and local protective partial ZF, that provide an adaptable trade-off between interference cancelation and boosting of the desired signal, with no additional front-haul overhead, and that are implementable by APs with very few antennas. We derive closed-form expressions for the achievable SE under the assumption of independent Rayleigh fading channel, channel estimation error and pilot contamination. These closed-form expressions are then used to devise optimal max-min fairness power control. Paper D) How to further improve the SE by letting the user estimate the DL channel from DL pilots, instead of relying solely on the knowledge of the channel statistics. We derive an approximate closed-form expression of the DL SE for conjugate beamforming (CB), and assuming independent Rayleigh fading. This expression accounts for beamformed DL pilots, estimation errors and pilot contamination at both the AP and the user side. We devise a sequential convex approximation algorithm to globally solve the max-min fairness power control optimization problem, and a greedy algorithm for uplink (UL) and DL pilot assignment. The latter consists in jointly selecting the UL and DL pilot pair, for each user, that maximizes the smallest SE in the network. Paper E) A precoding scheme that is more suitable when only the channel statistics are available at the users, referred to as enhanced normalized CB. It consists in normalizing the precoding vector by its squared norm in order to reduce the fluctuations of the effective channel seen at the user, and thereby to boost the channel hardening. The performance achieved by this scheme is compared with the CB scheme with DL training (described in Paper D). Paper F) A maximum-likelihood-based method to estimate the channel statistics in the UL, along with an accompanying pilot transmission scheme, that is particularly useful in line-of-sight operation and in scenarios with resource constraints. Pilots are structurally phase-rotated over different coherence blocks to create an effective statistical distribution of the received pilot signal that can be efficiently exploited by the AP when performing the proposed estimation method. The overall conclusion is that cell-free massive MIMO is not a utopia, and a practical, distributed, scalable, high-performance system can be implemented. Today it represents a hot research topic, but tomorrow it might represent a key enabler for beyond-5G technology, as massive MIMO has been for 5G. La quinta generazione dei sistemi radiomobili cellulari (5G) è oggi una realtà. Le reti 5G si stanno diffondendo in tutto il mondo e i dispositivi 5G (ad esempio smartphones, tablets, indossabili, ecc.) sono già disponibili sul mercato. I sistemi 5G garantiscono livelli di connettività e di qualità di servizio senza precedenti, per fronteggiare l’incessante crescita del numero di dispositivi connessi alla rete e della domanda di dati ad alta velocità. La tecnologia Massive MIMO (multiple-input multiple-output) riveste un ruolo fondamentale nei sistemi 5G. Il principio alla base di questa tecnologia è l’impiego di un elevato numero di antenne collocate nella base station (stazione radio base) le quali trasmettono/ricevono segnali, in maniere coerente, a/da più terminali utente. Questo co-processamento del segnale da parte di più antenne apporta molteplici benefici: guadagno di array, diversità spaziale e multiplazione degli utenti nel dominio spaziale. Questi elementi consentono di raggiungere i requisiti di servizio stabiliti per i sistemi 5G. Tuttavia, il limite principale dei sistemi massive MIMO, così come di ogni rete cellulare, è rappresentato dalla interferenza inter-cella (ovvero l’interferenza tra aree di copertura gestite da diverse base stations), la quale riduce in modo significativo le performance degli utenti a bordo cella, già degradate dalle attenuazioni del segnale dovute alla considerevole distanza dalla base station. Per superare queste limitazioni e fornire una qualità del servizio uniformemente eccellente a tutti gli utenti, è necessario un approccio più radicale e guardare oltre il classico paradigma cellulare che caratterizza le attuali architetture di rete. A tal proposito, cell-free massive MIMO (massive MIMO senza celle) costituisce un cambio di paradigma: ogni utente è circondato e servito contemporaneamente da numerose, semplici e di dimensioni ridotte base stations, denominate access points (punti di accesso alla rete). Gli access points cooperano per servire tutti gli utenti nella loro area di copertura congiunta, eliminando l’interferenza inter-cella e il concetto stesso di cella. Non risentendo più dell’effetto “bordo-cella”, gli utenti possono usufruire di qualità di servizio e velocità dati eccellenti. Sebbene attraente dal punto di vista delle performance, l’implementazione di un tale sistema distribuito è una operazione impegnativa ed è oggetto di questa tesi. Piu specificatamente, questa tesi di dottorato tratta: Articolo A) L’enorme potenziale di questa promettente tecnologia in scenari realistici sia indoor che outdoor, proponendo anche delle soluzioni di implementazione flessibili ed a basso costo. Articolo B) Come preservare la scalabilità del sistema, proponendo soluzioni distribuite riguardanti il processamento e la condivisione dei dati, l’architettura di rete e l’allocazione di potenza, ovvero come ottimizzare i livelli di potenza trasmessa dagli access points per ridurre l’interferenza tra utenti e migliorare le performance. Articolo C) Come migliorare l’efficienza spettrale in downlink (da access point verso utente) proponendo due schemi di pre-codifica dei dati di trasmissione, denominati local partial zero-forcing (ZF) e local protective partial ZF, che forniscono un perfetto compromesso tra cancellazione dell’interferenza tra utenti ed amplificazione del segnale desiderato. Articolo D) Come migliorare l’efficienza spettrale in downlink permettendo al terminale utente di stimare le informazioni sulle condizioni istantanee del canale da sequenze pilota, piuttosto che basarsi su informazioni statistiche ed a lungo termine, come convenzionalmente previsto. Articolo E) In alternativa alla soluzione precedente, uno schema di pre-codifica che è più adatto al caso in cui gli utenti hanno a disposizione esclusivamente informazioni statistiche sul canale per poter effettuare la decodifica dei dati. Articolo F) Un metodo per permettere agli access points di stimare, in maniera rapida, le condizioni di canale su base statistica, favorito da uno schema di trasmissione delle sequenze pilota basato su rotazione di fase. Realizzare un sistema cell-free massive MIMO pratico, distribuito, scalabile e performante non è una utopia. Oggi questo concept rappresenta un argomento di ricerca interessante, attraente e stimolante ma in futuro potrebbe costituire un fattore chiave per le tecnologie post-5G, proprio come massive MIMO lo è stato per il 5G. Den femte generationens mobilkommunikationssystem (5G) är numera en verklighet. 5G-nätverk är utplacerade på ett flertal platser världen över och de första 5G-kapabla terminalerna (såsom smarta telefoner, surfplattor, kroppsburna apparater, etc.) är redan kommersiellt tillgängliga. 5G-systemen kan tillhandahålla tidigare oöverträffade nivåer av uppkoppling och servicekvalitet och är designade för en fortsatt oavbruten tillväxt i antalet uppkopplade apparater och ökande datataktskrav. Massiv MIMO-teknologi (eng: multiple-input multiple-output) spelar en nyckelroll i dagens 5G-system. Principen bakom denna teknik är användningen av ett stort antal samlokaliserade antenner vid basstationen, där alla antennerna sänder och tar emot signaler faskoherent till och från flera användare. Gemensam signalbehandling av många antennsignaler ger ett flertal fördelar, såsom hög riktverkan via lobformning, vilket leder till högre datatakter samt möjliggör att flera användare utnyttjar samma radioresurser via rumslig användarmultiplexering. Eftersom en signal kan gå genom flera olika, möjligen oberoende kanaler, så utsätts den för flera olika förändringar samtidigt. Denna mångfald ökar kvaliteten på signalen vid mottagaren och förbättrar radiolänkens robusthet och tillförlitlighet. Detta gör det möjligt att uppfylla de höga kraven på servicekvalitet som fastställts för 5G-systemen. Den största begränsningen för massiva MIMO-system såväl som för alla cellulära mobilnätverk, är störningar från andra celler som påverkar användare på cellkanten väsentligt, vars prestanda redan begränsas av sträckdämpningen på radiokanalen. För att övervinna dessa begränsningar och för att kunna tillhandahålla samma utmärkta servicekvalitet till alla användare behöver vi ett mer radikalt angreppssätt: vi måste utmana cellparadigmet. I detta avseende utgör cellfri massiv-MIMO teknik ett paradigmskifte. I cellfri massive-MIMO är utgångspunkten inte att basstationen är omgiven av användare som den betjänar, utan snarare att varje användare omges av basstationer som de betjänas av. Dessa basstationer, ofta mindre och enklare, kallas accesspunkter (AP). I ett sådant system upplever varje användare att den befinner sig i centrum av systemet och ingen användare upplever några cellgränser. Därav terminologin cellfri. Som ett resultat av detta påverkas inte användarna av inter-cellstörningar och sträckdämpningen reduceras kraftigt på grund av närvaron av många accesspunkter i varje användares närhet. Detta leder till imponerande prestanda. Även om det är tilltalande ur ett prestandaperspektiv så är utformningen och implementeringen av ett sådant distribuerat massivt MIMO-system en utmanande uppgift, och det är syftet med denna avhandling att studera detta. Mer specifikt studerar vi i denna avhandling: A) den mycket stora potentialen med denna teknik i realistiska inomhus- såväl som utomhusscenarier, samt hur man hanterar praktiska implementeringsproblem, såsom klocksynkronisering bland accesspunkter och kostnadseffektiva implementeringar; B) hur man ska uppnå skalbarhet i systemet genom att föreslå lösningar relaterade till databehandling, nätverkstopologi och effektkontroll; C) hur man ökar datahastigheten i nedlänken med hjälp av två nyutvecklade distribuerade överföringsmetoder som tillhandahåller en avvägning mellan störningsundertryckning och förstärkning av önskade signaler, utan att öka mängden intern signalering till de distribuerade accesspunkterna, och som kan implementeras i accesspunkter med mycket få antenner; D) hur man kan förbättra prestandan ytterligare genom att låta användaren estimera nedlänkskanalen med hjälp av nedlänkspiloter, istället för att bara förlita sig på kunskap om kanalstatistik; E) en överföringsmetod för nedlänk som är mer lämpligt när endast kanalstatistiken är tillgänglig för användarna. Prestandan som uppnås genom detta schema jämförs med en utökad variant av den nedlänk-pilotbaserade metoden (beskrivet i föregående punkt); F) en metod för att uppskatta kanalstatistiken i upplänken, samt en åtföljande pilotsändningsmetod, som är särskilt användbart vid direktvägsutbredning (line-of-sight) och i scenarier med resursbegränsningar. Den övergripande slutsatsen är att cellfri massiv MIMO inte är en utopi, och att ett distribuerat, skalbart, samt högpresterande system kan implementeras praktiskt. Idag representerar detta ett hett forskningsämne, men snart kan det visa sig vara en viktig möjliggörare för teknik bortom dagens system, på samma sätt som centraliserad massiv MIMO har varit för de nya 5G-systemen.