[PDF] Lyapunov Functionals And Stability Of Stochastic Difference Equations - eBooks Review

Lyapunov Functionals And Stability Of Stochastic Difference Equations


Lyapunov Functionals And Stability Of Stochastic Difference Equations
DOWNLOAD

Download Lyapunov Functionals And Stability Of Stochastic Difference Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lyapunov Functionals And Stability Of Stochastic Difference Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Lyapunov Functionals And Stability Of Stochastic Difference Equations


Lyapunov Functionals And Stability Of Stochastic Difference Equations
DOWNLOAD
Author : Leonid Shaikhet
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-06-02

Lyapunov Functionals And Stability Of Stochastic Difference Equations written by Leonid Shaikhet and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-02 with Technology & Engineering categories.


Hereditary systems (or systems with either delay or after-effects) are widely used to model processes in physics, mechanics, control, economics and biology. An important element in their study is their stability. Stability conditions for difference equations with delay can be obtained using a Lyapunov functional. Lyapunov Functionals and Stability of Stochastic Difference Equations describes a general method of Lyapunov functional construction to investigate the stability of discrete- and continuous-time stochastic Volterra difference equations. The method allows the investigation of the degree to which the stability properties of differential equations are preserved in their difference analogues. The text is self-contained, beginning with basic definitions and the mathematical fundamentals of Lyapunov functional construction and moving on from particular to general stability results for stochastic difference equations with constant coefficients. Results are then discussed for stochastic difference equations of linear, nonlinear, delayed, discrete and continuous types. Examples are drawn from a variety of physical systems including inverted pendulum control, study of epidemic development, Nicholson’s blowflies equation and predator–prey relationships. Lyapunov Functionals and Stability of Stochastic Difference Equations is primarily addressed to experts in stability theory but will also be of use in the work of pure and computational mathematicians and researchers using the ideas of optimal control to study economic, mechanical and biological systems.



Lyapunov Functionals And Stability Of Stochastic Functional Differential Equations


Lyapunov Functionals And Stability Of Stochastic Functional Differential Equations
DOWNLOAD
Author : Leonid Shaikhet
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-29

Lyapunov Functionals And Stability Of Stochastic Functional Differential Equations written by Leonid Shaikhet and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-29 with Technology & Engineering categories.


Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential equations with delays. This work continues and complements the author’s previous book Lyapunov Functionals and Stability of Stochastic Difference Equations, where this method is described for difference equations with discrete and continuous time. The text begins with both a description and a delineation of the peculiarities of deterministic and stochastic functional differential equations. There follows basic definitions for stability theory of stochastic hereditary systems, and the formal procedure of Lyapunov functionals construction is presented. Stability investigation is conducted for stochastic linear and nonlinear differential equations with constant and distributed delays. The proposed method is used for stability investigation of different mathematical models such as: • inverted controlled pendulum; • Nicholson's blowflies equation; • predator-prey relationships; • epidemic development; and • mathematical models that describe human behaviours related to addictions and obesity. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations is primarily addressed to experts in stability theory but will also be of interest to professionals and students in pure and computational mathematics, physics, engineering, medicine, and biology.



Dynamical Systems And Applications


Dynamical Systems And Applications
DOWNLOAD
Author : Ravi P. Agarwal
language : en
Publisher: World Scientific
Release Date : 1995

Dynamical Systems And Applications written by Ravi P. Agarwal and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995 with Mathematics categories.


World Scientific series in Applicable Analysis (WSSIAA) aims at reporting new developments of high mathematical standard and current interest. Each volume in the series shall be devoted to the mathematical analysis that has been applied or potentially applicable to the solutions of scientific, engineering, and social problems. For the past twenty five years, there has been an explosion of interest in the study of nonlinear dynamical systems. Mathematical techniques developed during this period have been applied to important nonlinear problems ranging from physics and chemistry to ecology and economics. All these developments have made dynamical systems theory an important and attractive branch of mathematics to scientists in many disciplines. This rich mathematical subject has been partially represented in this collection of 45 papers by some of the leading researchers in the area. This volume contains 45 state-of-art articles on the mathematical theory of dynamical systems by leading researchers. It is hoped that this collection will lead new direction in this field.Contributors: B Abraham-Shrauner, V Afraimovich, N U Ahmed, B Aulbach, E J Avila-Vales, F Battelli, J M Blazquez, L Block, T A Burton, R S Cantrell, C Y Chan, P Collet, R Cushman, M Denker, F N Diacu, Y H Ding, N S A El-Sharif, J E Fornaess, M Frankel, R Galeeva, A Galves, V Gershkovich, M Girardi, L Gotusso, J Graczyk, Y Hino, I Hoveijn, V Hutson, P B Kahn, J Kato, J Keesling, S Keras, V Kolmanovskii, N V Minh, V Mioc, K Mischaikow, M Misiurewicz, J W Mooney, M E Muldoon, S Murakami, M Muraskin, A D Myshkis, F Neuman, J C Newby, Y Nishiura, Z Nitecki, M Ohta, G Osipenko, N Ozalp, M Pollicott, Min Qu, Donal O-Regan, E Romanenko, V Roytburd, L Shaikhet, J Shidawara, N Sibony, W-H Steeb, C Stoica, G Swiatek, T Takaishi, N D Thai Son, R Triggiani, A E Tuma, E H Twizell, M Urbanski; T D Van, A Vanderbauwhede, A Veneziani, G Vickers, X Xiang, T Young, Y Zarmi.



Optimal Control Of Stochastic Difference Volterra Equations


Optimal Control Of Stochastic Difference Volterra Equations
DOWNLOAD
Author : Leonid Shaikhet
language : en
Publisher: Springer
Release Date : 2014-11-27

Optimal Control Of Stochastic Difference Volterra Equations written by Leonid Shaikhet and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-27 with Technology & Engineering categories.


This book showcases a subclass of hereditary systems, that is, systems with behaviour depending not only on their current state but also on their past history; it is an introduction to the mathematical theory of optimal control for stochastic difference Volterra equations of neutral type. As such, it will be of much interest to researchers interested in modelling processes in physics, mechanics, automatic regulation, economics and finance, biology, sociology and medicine for all of which such equations are very popular tools. The text deals with problems of optimal control such as meeting given performance criteria, and stabilization, extending them to neutral stochastic difference Volterra equations. In particular, it contrasts the difference analogues of solutions to optimal control and optimal estimation problems for stochastic integral Volterra equations with optimal solutions for corresponding problems in stochastic difference Volterra equations. Optimal Control of Stochastic Difference Volterra Equations commences with an historical introduction to the emergence of this type of equation with some additional mathematical preliminaries. It then deals with the necessary conditions for optimality in the control of the equations and constructs a feedback control scheme. The approximation of stochastic quasilinear Volterra equations with quadratic performance functionals is then considered. Optimal stabilization is discussed and the filtering problem formulated. Finally, two methods of solving the optimal control problem for partly observable linear stochastic processes, also with quadratic performance functionals, are developed. Integrating the author’s own research within the context of the current state-of-the-art of research in difference equations, hereditary systems theory and optimal control, this book is addressed to specialists in mathematical optimal control theory and to graduate students in pure and applied mathematics and control engineering.



Advances In Discrete Dynamical Systems Difference Equations And Applications


Advances In Discrete Dynamical Systems Difference Equations And Applications
DOWNLOAD
Author : Saber Elaydi
language : en
Publisher: Springer Nature
Release Date : 2023-03-25

Advances In Discrete Dynamical Systems Difference Equations And Applications written by Saber Elaydi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-03-25 with Mathematics categories.


​This book comprises selected papers of the 26th International Conference on Difference Equations and Applications, ICDEA 2021, held virtually at the University of Sarajevo, Bosnia and Herzegovina, in July 2021. The book includes the latest and significant research and achievements in difference equations, discrete dynamical systems, and their applications in various scientific disciplines. The book is interesting for Ph.D. students and researchers who want to keep up to date with the latest research, developments, and achievements in difference equations, discrete dynamical systems, and their applications, the real-world problems.



Applied Stochastic Differential Equations


Applied Stochastic Differential Equations
DOWNLOAD
Author : Simo Särkkä
language : en
Publisher: Cambridge University Press
Release Date : 2019-05-02

Applied Stochastic Differential Equations written by Simo Särkkä and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-02 with Business & Economics categories.


With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.



Stability Of Infinite Dimensional Stochastic Differential Equations With Applications


Stability Of Infinite Dimensional Stochastic Differential Equations With Applications
DOWNLOAD
Author : Kai Liu
language : en
Publisher: CRC Press
Release Date : 2005-08-23

Stability Of Infinite Dimensional Stochastic Differential Equations With Applications written by Kai Liu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-08-23 with Mathematics categories.


Stochastic differential equations in infinite dimensional spaces are motivated by the theory and analysis of stochastic processes and by applications such as stochastic control, population biology, and turbulence, where the analysis and control of such systems involves investigating their stability. While the theory of such equations is well establ



Bit String Physics


Bit String Physics
DOWNLOAD
Author : H. Pierre Noyes
language : en
Publisher: World Scientific
Release Date : 2001

Bit String Physics written by H. Pierre Noyes and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Science categories.


We could be on the threshold of a scientific revolution. Quantum mechanics is based on unique, finite, and discrete events. General relativity assumes a continuous, curved space-time. Reconciling the two remains the most fundamental unsolved scientific problem left over from the last century. The papers of H Pierre Noyes collected in this volume reflect one attempt to achieve that unification by replacing the continuum with the bit-string events of computer science. Three principles are used: physics can determine whether two quantities are the same or different; measurement can tell something from nothing; this structure (modeled by binary addition and multiplication) can leave a historical record consisting of a growing universe of bit-strings. This book is specifically addressed to those interested in the foundations of particle physics, relativity, quantum mechanics, physical cosmology and the philosophy of science. Contents: Non-Locality in Particle Physics; On the Physical Interpretation and the Mathematical Structure of the Combinatorial Hierarchy (with T Bastin, J Amson & C W Kilmister); On the Construction of Relativistic Quantum Theory: A Progress Report; Foundations of a Discrete Physics (with D McGoveran); Comment on OC Statistical Mechanical Origin of the Entropy of a Rotating Charged Black HoleOCO Anti-Gravity: The Key to 21st Century Physics; Crossing Symmetry is Incompatible with General Relativity; Operationalism Revisited: Measurement Accuracy, Scale Invariance and the Combinatorial Hierarchy; Discrete Physics and the Derivation of Electromagnetism from the Formalism of Quantum Mechanics (with L H Kauffman); Are Partons Confined Tachyons?; A Short Introduction to Bit-String Physics; Process, System, Causality and Quantum Mechanics: A Psychoanalysis of Animal Faith (with T Etter); and other papers. Readership: Researchers interested in the foundations of particle physics, relativity, quantum mechanics, physical cosmology and the philosophy of science."



Applied Mechanics Reviews


Applied Mechanics Reviews
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1973

Applied Mechanics Reviews written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1973 with Mechanics, Applied categories.




Functional Differential Equations


Functional Differential Equations
DOWNLOAD
Author : Constantin Corduneanu
language : en
Publisher: John Wiley & Sons
Release Date : 2016-04-11

Functional Differential Equations written by Constantin Corduneanu and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-11 with Mathematics categories.


Features new results and up-to-date advances in modeling and solving differential equations Introducing the various classes of functional differential equations, Functional Differential Equations: Advances and Applications presents the needed tools and topics to study the various classes of functional differential equations and is primarily concerned with the existence, uniqueness, and estimates of solutions to specific problems. The book focuses on the general theory of functional differential equations, provides the requisite mathematical background, and details the qualitative behavior of solutions to functional differential equations. The book addresses problems of stability, particularly for ordinary differential equations in which the theory can provide models for other classes of functional differential equations, and the stability of solutions is useful for the application of results within various fields of science, engineering, and economics. Functional Differential Equations: Advances and Applications also features: • Discussions on the classes of equations that cannot be solved to the highest order derivative, and in turn, addresses existence results and behavior types • Oscillatory motion and solutions that occur in many real-world phenomena as well as in man-made machines • Numerous examples and applications with a specific focus on ordinary differential equations and functional differential equations with finite delay • An appendix that introduces generalized Fourier series and Fourier analysis after periodicity and almost periodicity • An extensive Bibliography with over 550 references that connects the presented concepts to further topical exploration Functional Differential Equations: Advances and Applications is an ideal reference for academics and practitioners in applied mathematics, engineering, economics, and physics. The book is also an appropriate textbook for graduate- and PhD-level courses in applied mathematics, differential and difference equations, differential analysis, and dynamics processes. CONSTANTIN CORDUNEANU, PhD, is Emeritus Professor in the Department of Mathematics at The University of Texas at Arlington, USA. The author of six books and over 200 journal articles, he is currently Associate Editor for seven journals; a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Romanian Academy; and past president of the American Romanian Academy of Arts and Sciences. YIZENG LI, PhD, is Professor in the Department of Mathematics at Tarrant County College, USA. He is a member of the Society for Industrial and Applied Mathematics. MEHRAN MAHDAVI, PhD, is Professor in the Department of Mathematics at Bowie State University, USA. The author of numerous journal articles, he is a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Mathematical Association of America.