[PDF] Machine Design Problem Solver - eBooks Review

Machine Design Problem Solver


Machine Design Problem Solver
DOWNLOAD

Download Machine Design Problem Solver PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Design Problem Solver book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Machine Design Problem Solver


Machine Design Problem Solver
DOWNLOAD
Author :
language : en
Publisher: Research & Education Assoc.
Release Date : 1988

Machine Design Problem Solver written by and has been published by Research & Education Assoc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1988 with Machine design categories.




Electromagnetics Problem Solver


Electromagnetics Problem Solver
DOWNLOAD
Author :
language : en
Publisher: Research & Education Assoc.
Release Date :

Electromagnetics Problem Solver written by and has been published by Research & Education Assoc. this book supported file pdf, txt, epub, kindle and other format this book has been release on with Science categories.


Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. All your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies. Here in this highly useful reference is the finest overview of electromagnetics currently available, with hundreds of electromagnetics problems that cover everything from dielectrics and magnetic fields to plane waves and transmission lines. Each problem is clearly solved with step-by-step detailed solutions. DETAILS - The PROBLEM SOLVERS are unique - the ultimate in study guides. - They are ideal for helping students cope with the toughest subjects. - They greatly simplify study and learning tasks. - They enable students to come to grips with difficult problems by showing them the way, step-by-step, toward solving problems. As a result, they save hours of frustration and time spent on groping for answers and understanding. - They cover material ranging from the elementary to the advanced in each subject. - They work exceptionally well with any text in its field. - PROBLEM SOLVERS are available in 41 subjects. - Each PROBLEM SOLVER is prepared by supremely knowledgeable experts. - Most are over 1000 pages. - PROBLEM SOLVERS are not meant to be read cover to cover. They offer whatever may be needed at a given time. An excellent index helps to locate specific problems rapidly. TABLE OF CONTENTS Introduction SECTION I Chapter 1: Vector Analysis Scalars and Vectors Gradient, Divergence, and Curl Line, Surface, and Volume Integrals Stoke's Theorem Chapter 2: Electric Charges Charge Densities and Distributions Coulomb's Law Electric Field Chapter 3: Electric Field Intensity Electric Flux Gauss's Law Charges Chapter 4: Potential Work Potential Potential and Gradient Motion in Electric Field Energy Chapter 5: Dielectrics Current Density Resistance Polarization Boundary Conditions Dielectrics Chapter 6: Capacitance Capacitance Parallel Plate Capacitors Coaxial and Concentric Capacitors Multiple Dielectric Capacitors, Series and Parallel Combinations Potential Stored Energy and Force in Capacitors Chapter 7: Poisson's and Laplace Equations Laplace's Equation Poisson's Equation Iteration Method Images Chapter 8: Steady Magnetic Fields Biot-Savart's Law Ampere's Law Magnetic Flux and Flux Density Vector Magnetic Potential H-Field Chapter 9: Forces in Steady Magnetic Fields Forces on Moving Charges Forces on Differential Current Elements Forces on Conductors Carrying Currents Magnetization Magnetic Boundary Conditions Potential Energy of Magnetic Fields Chapter 10: Magnetic Circuits Reluctance and Permeance Determination of Ampere-Turns Flux Produced by a Given mmf Self and Mutual Inductance Force and Torque in Magnetic Circuits Chapter 11: Time - Varying Fields and Maxwell's Equations Faraday's Law Maxwell's Equations Displacement Current Generators Chapter 12: Plane Waves Energy and the Poynting Vector Normal Incidence Boundary Conditions Plane Waves in Conducting Dielectric Media Plane Waves in Free Space Plane Waves and Current Density Chapter 13: Transmission Lines Equations of Transmission Lines Input Impedances Smith Chart Matching Reflection Coefficient Chapter 14: Wave Guides and Antennas Cutoff Frequencies for TE and TM Modes Propagation and Attenuation Constants Field Components in Wave-Guides Absorbed and Transmitted Power Characteristics of Antennas Radiated and Absorbed Power of Antennas SECTION II - Summary of Electromagnetic Propagation in Conducting Media II-1 Basic Equations and Theorems Maxwell's Equation Auxiliary Potentials Harmonic Time Variation Particular Solutions for an Unbounded Homogenous Region with Sources Poynting Vector Reciprocity Theorem Boundary Conditions Uniqueness Theorems TM and TE Field Analysis II-2 Plane Waves Uniform Plane Waves Nonuniform Plane Waves Reflection and Refraction at a Plane Surface Refraction in a Conducting Medium Surface Waves Plane Waves in Layered Media Impedance Boundary Conditions Propogation into a conductor with a Rough Surface II-3 Electromagnetic Field of Dipole Sources Infinite Homogenous Conducting Medium Semi-Infinite Homogenous Conducting Medium Static Electric Dipole Harmonic Dipole Sources Far Field Near Field Quasi-Static Field Layered Conducting Half Space II-4 Electromagnetic Field of Long Line Sources and Finite Length Electric Antennas Infinite Homogenous Conducting Medium Long Line Source Finite Length Electric Antenna Semi-Infinite Homogenous Conducting Medium Long Line Source Finite Length Electric Antenna Layered Conducting Half Space Long Line Source Finite Length Electric Antenna Appendix Parameters of Conducting Media Dipole Approximation Scattering Antenna Impedance ELF and VLF Atmospheric Noise Index WHAT THIS BOOK IS FOR Students have generally found electromagnetics a difficult subject to understand and learn. Despite the publication of hundreds of textbooks in this field, each one intended to provide an improvement over previous textbooks, students of electromagnetics continue to remain perplexed as a result of numerous subject areas that must be remembered and correlated when solving problems. Various interpretations of electromagnetics terms also contribute to the difficulties of mastering the subject. In a study of electromagnetics, REA found the following basic reasons underlying the inherent difficulties of electromagnetics: No systematic rules of analysis were ever developed to follow in a step-by-step manner to solve typically encountered problems. This results from numerous different conditions and principles involved in a problem which leads to many possible different solution methods. To prescribe a set of rules for each of the possible variations would involve an enormous number of additional steps, making this task more burdensome than solving the problem directly due to the expectation of much trial and error. Current textbooks normally explain a given principle in a few pages written by an electromagnetics professional who has insight into the subject matter not shared by others. These explanations are often written in an abstract manner that causes confusion as to the principle's use and application. Explanations then are often not sufficiently detailed or extensive enough to make the reader aware of the wide range of applications and different aspects of the principle being studied. The numerous possible variations of principles and their applications are usually not discussed, and it is left to the reader to discover this while doing exercises. Accordingly, the average student is expected to rediscover that which has long been established and practiced, but not always published or adequately explained. The examples typically following the explanation of a topic are too few in number and too simple to enable the student to obtain a thorough grasp of the involved principles. The explanations do not provide sufficient basis to solve problems that may be assigned for homework or given on examinations. Poorly solved examples such as these can be presented in abbreviated form which leaves out much explanatory material between steps, and as a result requires the reader to figure out the missing information. This leaves the reader with an impression that the problems and even the subject are hard to learn - completely the opposite of what an example is supposed to do. Poor examples are often worded in a confusing or obscure way. They might not state the nature of the problem or they present a solution, which appears to have no direct relation to the problem. These problems usually offer an overly general discussion - never revealing how or what is to be solved. Many examples do not include accompanying diagrams or graphs, denying the reader the exposure necessary for drawing good diagrams and graphs. Such practice only strengthens understanding by simplifying and organizing electromagnetics processes. Students can learn the subject only by doing the exercises themselves and reviewing them in class, obtaining experience in applying the principles with their different ramifications. In doing the exercises by themselves, students find that they are required to devote considerable more time to electromagnetics than to other subjects, because they are uncertain with regard to the selection and application of the theorems and principles involved. It is also often necessary for students to discover those "tricks" not revealed in their texts (or review books) that make it possible to solve problems easily. Students must usually resort to methods of trial and error to discover these "tricks," therefore finding out that they may sometimes spend several hours to solve a single problem. When reviewing the exercises in classrooms, instructors usually request students to take turns in writing solutions on the boards and explaining them to the class. Students often find it difficult to explain in a manner that holds the interest of the class, and enables the remaining students to follow the material written on the boards. The remaining students in the class are thus too occupied with copying the material off the boards to follow the professor's explanations. This book is intended to aid students in electromagnetics overcome the difficulties described by supplying detailed illustrations of the solution methods that are usually not apparent to students. Solution methods are illustrated by problems that have been selected from those most often assigned for class work and given on examinations. The problems are arranged in order of complexity to enable students to learn and understand a particular topic by reviewing the problems in sequence. The problems are illustrated with detailed, step-by-step explanations, to save the students large amounts of time that is often needed to fill in the gaps that are usually found between steps of illustrations in textbooks or review/outline books. The staff of REA considers electromagnetics a subject that is best learned by allowing students to view the methods of analysis and solution techniques. This learning approach is similar to that practiced in various scientific laboratories, particularly in the medical fields. In using this book, students may review and study the illustrated problems at their own pace; students are not limited to the time such problems receive in the classroom. When students want to look up a particular type of problem and solution, they can readily locate it in the book by referring to the index that has been extensively prepared. It is also possible to locate a particular type of problem by glancing at just the material within the boxed portions. Each problem is numbered and surrounded by a heavy black border for speedy identification.



Mechanical Design Of Machine Components


Mechanical Design Of Machine Components
DOWNLOAD
Author : Ansel C. Ugural
language : en
Publisher: Taylor & Francis
Release Date : 2018-09-03

Mechanical Design Of Machine Components written by Ansel C. Ugural and has been published by Taylor & Francis this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-03 with Science categories.


Analyze and Solve Real-World Machine Design Problems Using SI Units Mechanical Design of Machine Components, Second Edition: SI Version strikes a balance between method and theory, and fills a void in the world of design. Relevant to mechanical and related engineering curricula, the book is useful in college classes, and also serves as a reference for practicing engineers. This book combines the needed engineering mechanics concepts, analysis of various machine elements, design procedures, and the application of numerical and computational tools. It demonstrates the means by which loads are resisted in mechanical components, solves all examples and problems within the book using SI units, and helps readers gain valuable insight into the mechanics and design methods of machine components. The author presents structured, worked examples and problem sets that showcase analysis and design techniques, includes case studies that present different aspects of the same design or analysis problem, and links together a variety of topics in successive chapters. SI units are used exclusively in examples and problems, while some selected tables also show U.S. customary (USCS) units. This book also presumes knowledge of the mechanics of materials and material properties. New in the Second Edition: Presents a study of two entire real-life machines Includes Finite Element Analysis coverage supported by examples and case studies Provides MATLAB solutions of many problem samples and case studies included on the book’s website Offers access to additional information on selected topics that includes website addresses and open-ended web-based problems Class-tested and divided into three sections, this comprehensive book first focuses on the fundamentals and covers the basics of loading, stress, strain, materials, deflection, stiffness, and stability. This includes basic concepts in design and analysis, as well as definitions related to properties of engineering materials. Also discussed are detailed equilibrium and energy methods of analysis for determining stresses and deformations in variously loaded members. The second section deals with fracture mechanics, failure criteria, fatigue phenomena, and surface damage of components. The final section is dedicated to machine component design, briefly covering entire machines. The fundamentals are applied to specific elements such as shafts, bearings, gears, belts, chains, clutches, brakes, and springs.



Probability Problem Solver


Probability Problem Solver
DOWNLOAD
Author : staff of Research and Education Association
language : en
Publisher: Research & Education Assoc.
Release Date : 2001-01-01

Probability Problem Solver written by staff of Research and Education Association and has been published by Research & Education Assoc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-01-01 with Mathematics categories.


Exhaustive coverage is given to all major topics in probability. Among the many topics covered are set theory, Venn diagrams, discrete random variables, continuous random variables, moments, joint distributions, laws of large numbers, and the central limit theorem. Specific exercises and examples accompany each chapter. This book is a necessity for anyone studying probability and statistics.



Topology Problem Solver


Topology Problem Solver
DOWNLOAD
Author :
language : en
Publisher: Research & Education Assoc.
Release Date :

Topology Problem Solver written by and has been published by Research & Education Assoc. this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.


Thorough coverage is given to the fundamental concepts of topology, axiomatic set theory, mappings, cardinal numbers, ordinal numbers, metric spaces, topological spaces, separation axioms, Cartesian products, the elements of homotopy theory, and other topics. A comprehensive study aid for the graduate student and beyond.



Mathematics For Engineers Problem Solver


Mathematics For Engineers Problem Solver
DOWNLOAD
Author :
language : en
Publisher: Research & Education Assoc.
Release Date :

Mathematics For Engineers Problem Solver written by and has been published by Research & Education Assoc. this book supported file pdf, txt, epub, kindle and other format this book has been release on with Mathematics categories.


Designed specifically for use by engineering students. Contains comprehensive treatments of all areas of mathematics and their applications. Included are problems and solutions for calculus, complex variables, electronics, mechanics, physics, and other areas of mathematical study.



Accounting Problem Solver


Accounting Problem Solver
DOWNLOAD
Author : William D. Keller
language : en
Publisher: Research & Education Assoc.
Release Date : 2011-09-09

Accounting Problem Solver written by William D. Keller and has been published by Research & Education Assoc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-09 with Business & Economics categories.


Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. Answers to all of your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies. Here in this highly useful reference is the finest overview of accounting currently available, with hundreds of accounting problems that cover everything from interest and cash flow to taxes and corporate earnings. Each problem is clearly solved with step-by-step detailed solutions. DETAILS - The PROBLEM SOLVERS are unique - the ultimate in study guides. - They are ideal for helping students cope with the toughest subjects. - They greatly simplify study and learning tasks. - They enable students to come to grips with difficult problems by showing them the way, step-by-step, toward solving problems. As a result, they save hours of frustration and time spent on groping for answers and understanding. - They cover material ranging from the elementary to the advanced in each subject. - They work exceptionally well with any text in its field. - PROBLEM SOLVERS are available in 41 subjects. - Each PROBLEM SOLVER is prepared by supremely knowledgeable experts. - Most are over 1000 pages. - PROBLEM SOLVERS are not meant to be read cover to cover. They offer whatever may be needed at a given time. An excellent index helps to locate specific problems rapidly. - Educators consider the PROBLEM SOLVERS the most effective and valuable study aids; students describe them as "fantastic" - the best books on the market. TABLE OF CONTENTS Introduction Chapter 1: Earnings Per Share of the Corporation Chapter 2: Stocks Chapter 3: Retained Earnings Chapter 4: Earning Per Share of the Corporation Chapter 5: Investments in Stocks and Bonds Chapter 6: The Balance Sheet Chapter 7: Interest and Money's Value Chapter 8: Cash and Receivables Chapter 9: Inventories Chapter 10: Determination of Ending Inventories Chapter 11: Long-Term Assets Chapter 12: Depreciation, Depletion, and Amortization Chapter 13: Intangible Assets Chapter 14: Current Liabilities Chapter 15: Long-Term Liabilities Chapter 16: Recognizing Revenue Chapter 17: Income Tax Accounting Chapter 18: Accounting for Pensions Chapter 19: Leases Chapter 20: Changes in Accounting Systems and Analysis of Errors Chapter 21: Cash Flow Chapter 22: Analysis of Financial Statements Index WHAT THIS BOOK IS FOR Students have generally found accounting a difficult subject to understand and learn. Despite the publication of hundreds of textbooks in this field, each one intended to provide an improvement over previous textbooks, students of accounting continue to remain perplexed as a result of numerous subject areas that must be remembered and correlated when solving problems. Various interpretations of accounting terms also contribute to the difficulties of mastering the subject. In a study of accounting, REA found the following basic reasons underlying the inherent difficulties of accounting: No systematic rules of analysis were ever developed to follow in a step-by-step manner to solve typically encountered problems. This results from numerous different conditions and principles involved in a problem that leads to many possible different solution methods. To prescribe a set of rules for each of the possible variations would involve an enormous number of additional steps, making this task more burdensome than solving the problem directly due to the expectation of much trial and error. Current textbooks normally explain a given principle in a few pages written by an accounting professional who has insight into the subject matter not shared by others. These explanations are often written in an abstract manner that causes confusion as to the principle's use and application. Explanations then are often not sufficiently detailed or extensive enough to make the reader aware of the wide range of applications and different aspects of the principle being studied. The numerous possible variations of principles and their applications are usually not discussed, and it is left to the reader to discover this while doing exercises. Accordingly, the average student is expected to rediscover that which has long been established and practiced, but not always published or adequately explained. The examples typically following the explanation of a topic are too few in number and too simple to enable the student to obtain a thorough grasp of the involved principles. The explanations do not provide sufficient basis to solve problems that may be assigned for homework or given on examinations. Poorly solved examples such as these can be presented in abbreviated form which leaves out much explanatory material between steps, and as a result requires the reader to figure out the missing information. This leaves the reader with an impression that the problems and even the subject are hard to learn - completely the opposite of what an example is supposed to do. Poor examples are often worded in a confusing or obscure way. They might not state the nature of the problem or they present a solution, which appears to have no direct relation to the problem. These problems usually offer an overly general discussion - never revealing how or what is to be solved. Many examples do not include accompanying diagrams or graphs denying the reader the exposure necessary for drawing good diagrams and graphs. Such practice only strengthens understanding by simplifying and organizing accounting processes. Students can learn the subject only by doing the exercises themselves and reviewing them in class, obtaining experience in applying the principles with their different ramifications. In doing the exercises by themselves, students find that they are required to devote considerable more time to accounting than to other subjects, because they are uncertain with regard to the selection and application of the theorems and principles involved. It is also often necessary for students to discover those "tricks" not revealed in their texts (or review books) that make it possible to solve problems easily. Students must usually resort to methods of trial and error to discover these "tricks," therefore finding out that they may sometimes spend several hours to solve a single problem. When reviewing the exercises in classrooms, instructors usually request students to take turns in writing solutions on the boards and explaining them to the class. Students often find it difficult to explain in a manner that holds the interest of the class, and enables the remaining students to follow the material written on the boards. The remaining students in the class are thus too occupied with copying the material off the boards to follow the professor's explanations. This book is intended to aid students in accounting overcome the difficulties described by supplying detailed illustrations of the solution methods that are usually not apparent to students. Solution methods are illustrated by problems that have been selected from those most often assigned for class work and given on examinations. The problems are arranged in order of complexity to enable students to learn and understand a particular topic by reviewing the problems in sequence. The problems are illustrated with detailed, step-by-step explanations, to save the students large amounts of time that is often needed to fill in the gaps that are usually found between steps of illustrations in textbooks or review/outline books. The staff of REA considers accounting a subject that is best learned by allowing students to view the methods of analysis and solution techniques. This learning approach is similar to that practiced in various scientific laboratories, particularly in the medical fields. In using this book, students may review and study the illustrated problems at their own pace; students are not limited to the time such problems receive in the classroom. When students want to look up a particular type of problem and solution, they can readily locate it in the book by referring to the index that has been extensively prepared. It is also possible to locate a particular type of problem by glancing at just the material within the boxed portions. Each problem is numbered and surrounded by a heavy black border for speedy identification.



Artificial Intelligence In The Pacific Rim


Artificial Intelligence In The Pacific Rim
DOWNLOAD
Author : Hozumi Tanaka
language : en
Publisher: IOS Press
Release Date : 1991

Artificial Intelligence In The Pacific Rim written by Hozumi Tanaka and has been published by IOS Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991 with Computers categories.


In the last decade, AI firmly settled into our industrial society with the expert systems as the representative product. However, almost every one of the systems could cover only a single task domain. In the highly mechanized world of the 21st century, systems will become smart and user friendly enough to cover a wide range of task domains. Systems with much user friendliness must be multilingual because users in different domains usually have different languages. Language is formed in its own culture. Therefore, promotion for cross-cultural scientific interchange will be indispensable for the progress of AI.



Artificial General Intelligence


Artificial General Intelligence
DOWNLOAD
Author : Matthew Iklé
language : en
Publisher: Springer
Release Date : 2018-08-02

Artificial General Intelligence written by Matthew Iklé and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-02 with Computers categories.


This book constitutes the proceedings of the 11th International Conference on Artificial General Intelligence, AGI 2018, held in Prague, Czech Republic, in August 2018. The 19 regular papers and 10 poster papers presented in this book were carefully reviewed and selected from 52 submissions. The conference encourage interdisciplinary research based on different understandings of intelligence, and exploring different approaches. As the AI field becomes increasingly commercialized and well accepted, maintaining and emphasizing a coherent focus on the AGI goals at the heart of the field remains more critical than ever.



Machine Design


Machine Design
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2009

Machine Design written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Engineering categories.