Machine Learning Algorithms And Techniques

DOWNLOAD
Download Machine Learning Algorithms And Techniques PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning Algorithms And Techniques book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Understanding Machine Learning
DOWNLOAD
Author : Shai Shalev-Shwartz
language : en
Publisher: Cambridge University Press
Release Date : 2014-05-19
Understanding Machine Learning written by Shai Shalev-Shwartz and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-19 with Computers categories.
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.
Machine Learning Algorithms And Applications
DOWNLOAD
Author : Mettu Srinivas
language : en
Publisher: John Wiley & Sons
Release Date : 2021-08-10
Machine Learning Algorithms And Applications written by Mettu Srinivas and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-10 with Computers categories.
Machine Learning Algorithms is for current and ambitious machine learning specialists looking to implement solutions to real-world machine learning problems. It talks entirely about the various applications of machine and deep learning techniques, with each chapter dealing with a novel approach of machine learning architecture for a specific application, and then compares the results with previous algorithms. The book discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, sentiment analysis, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the user can easily move from the equations in the book to a computer program.
Practical Approach For Machine Learning And Deep Learning Algorithms
DOWNLOAD
Author : Pandey Abhishek Kumar
language : en
Publisher: BPB Publications
Release Date : 2019-09-20
Practical Approach For Machine Learning And Deep Learning Algorithms written by Pandey Abhishek Kumar and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-20 with Computers categories.
Guide covering topics from machine learning, regression models, neural network to tensor flow Key features Machine learning in MATLAB using basic concepts and algorithms. Deriving and accessing of data in MATLAB and next, pre-processing and preparation of data. Machine learning workflow for health monitoring. The neural network domain and implementation in MATLAB with explicit explanation of code and results. How predictive model can be improved using MATLAB? MATLAB code for an algorithm implementation, rather than for mathematical formula. Machine learning workflow for health monitoring. Description Machine learning is mostly sought in the research field and has become an integral part of many research projects nowadays including commercial applications, as well as academic research. Application of machine learning ranges from finding friends on social networking sites to medical diagnosis and even satellite processing. In this book, we have made an honest effort to make the concepts of machine learning easy and give basic programs in MATLAB right from the installation part. Although the real-time application of machine learning is endless, however, the basic concepts and algorithms are discussed using MATLAB language so that not only graduation students but also researchers are benefitted from it.What will you learn Pre-requisites to machine learning Finding natural patterns in data Building classification methods Data pre-processing in Python Building regression models Creating neural networks Deep learning Who this book is forThe book is basically meant for graduate and research students who find the algorithms of machine learning difficult to implement. We have touched all basic algorithms of machine learning in detail with a practical approach. Primarily, beginners will find this book more effective as the chapters are subdivided in a manner that they find the building and implementation of algorithms in MATLAB interesting and easy at the same time.Table of contents1. Pre-requisite to Machine Learning2. An introduction to Machine Learning3. Finding Natural Patterns in Data4. Building Classification Methods5. Data Pre-Processing in Python6. Building Regression Models7. Creating Neural Networks8. Introduction to Deep LearningAbout the authorAbhishek Kumar Pandey is pursuing his Doctorate in computer science and done M.Tech in Computer Sci. & Engineering. He has been working as an Assistant professor of Computer Science at Aryabhatt Engineering College and Research center, Ajmer and also visiting faculty in Government University MDS Ajmer. He has total Academic teaching experience of more than eight years with more than 50 publications in reputed National and International Journals. His research area includes- Artificial intelligence, Image processing, Computer Vision, Data Mining, Machine Learning. His Blog: http://veenapandey.simplesite.com/His LinkedIn Profile: https://www.linkedin.com/in/abhishek-pandey-ba6a6a64/ Pramod Singh Rathore is M. Tech in Computer Sci. and Engineering from Government Engineering College Ajmer, Rajasthan Technical University, Kota, India. He have been working as an Assistant Professor Computer Science at Aryabhatt Engineering College and Research center, Ajmer and also a visiting faculty in Government University Ajmer. He has authored a book in Network simulation which published worldwide. He has a total academic teaching experience more than 7 years with many publications in reputed national group, CRC USA, and has 40 publications as Research papers and Chapters in reputed National and International E-SCI SCOPUS. His research area includes machine learning, NS2, Computer Network, Mining, and DBMS. Dr S. Balamurugan is the Head of Research and Development, Quants IS & CS, India. Formely, he was the Director of Research and Development at Mindnotix Technologies, India. He has authored/co-authored 33 books and has 200 publications in various international journals and conferences to his credit. He was awarded with Three Post-Doctoral Degrees- Doctor of Science (D.Sc.) degree and Two Doctor of Letters(D.Litt) degrees for his significant contribution to research and development in Engineering, and is the recepient of thee Best Director Award, 2018. His biography is listed in "e;World Book of Researchers"e; 2018, Oxford, UK and in "e;Marquis WHO'S WHO"e; 2018 issue, New Jersey, USA. He carried out a healthcare consultancy project for VGM Hospitals between 2013 and 2016, and his current research projects include "e;Women Empowerment using IoT"e;, "e;Health-Aware Smart Chair"e;, "e;Advanced Brain Simulators for Assisting Physiological Medicine"e;, "e;Designing Novel Health Bands"e; and "e;IoT -based Devices for Assisting Elderly People"e;. His LinkedIn Profile: https://www.linkedin.com/in/dr-s-balamurugan-008a7512/
Mastering Machine Learning Algorithms
DOWNLOAD
Author : Giuseppe Bonaccorso
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-01-31
Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Computers categories.
Updated and revised second edition of the bestselling guide to exploring and mastering the most important algorithms for solving complex machine learning problems Key FeaturesUpdated to include new algorithms and techniquesCode updated to Python 3.8 & TensorFlow 2.x New coverage of regression analysis, time series analysis, deep learning models, and cutting-edge applicationsBook Description Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains. You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks. By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios. What you will learnUnderstand the characteristics of a machine learning algorithmImplement algorithms from supervised, semi-supervised, unsupervised, and RL domainsLearn how regression works in time-series analysis and risk predictionCreate, model, and train complex probabilistic models Cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work – train, optimize, and validate them Work with autoencoders, Hebbian networks, and GANsWho this book is for This book is for data science professionals who want to delve into complex ML algorithms to understand how various machine learning models can be built. Knowledge of Python programming is required.
Mastering Machine Learning Algorithms
DOWNLOAD
Author : Giuseppe Bonaccorso
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-05-25
Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-25 with Computers categories.
Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and more Book Description Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learn Explore how a ML model can be trained, optimized, and evaluated Understand how to create and learn static and dynamic probabilistic models Successfully cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work and how to train, optimize, and validate them Work with Autoencoders and Generative Adversarial Networks Apply label spreading and propagation to large datasets Explore the most important Reinforcement Learning techniques Who this book is for This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.
Evolutionary Machine Learning Techniques
DOWNLOAD
Author : Seyedali Mirjalili
language : en
Publisher: Springer Nature
Release Date : 2019-11-11
Evolutionary Machine Learning Techniques written by Seyedali Mirjalili and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-11 with Technology & Engineering categories.
This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks. The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm, dragonfly algorithm, salp swarm algorithm, multi-verse optimizer, and sine cosine algorithm. The book also covers applications of the improved artificial neural networks to solve classification, clustering, prediction and regression problems in diverse fields.
Machine Learning Algorithms And Techniques
DOWNLOAD
Author : SURESH KOTTUR
language : en
Publisher: RK Publication
Release Date : 2024-08-01
Machine Learning Algorithms And Techniques written by SURESH KOTTUR and has been published by RK Publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-01 with Computers categories.
Machine Learning Algorithms and Techniques the foundational algorithms and advanced techniques of machine learning, designed to empower readers in building intelligent, data-driven applications. Covering a wide array of algorithms—supervised, unsupervised, and reinforcement learning offers in-depth explanations, real-world examples, and practical applications. Whether you’re a beginner or an experienced practitioner, this guide provides a clear understanding of core concepts, optimization strategies, and performance evaluation methods, equipping you with essential skills for navigating the dynamic field of machine learning.
Machine Learning Algorithms For Industrial Applications
DOWNLOAD
Author : Santosh Kumar Das
language : en
Publisher: Springer Nature
Release Date : 2020-07-18
Machine Learning Algorithms For Industrial Applications written by Santosh Kumar Das and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-18 with Technology & Engineering categories.
This book explores several problems and their solutions regarding data analysis and prediction for industrial applications. Machine learning is a prominent topic in modern industries: its influence can be felt in many aspects of everyday life, as the world rapidly embraces big data and data analytics. Accordingly, there is a pressing need for novel and innovative algorithms to help us find effective solutions in industrial application areas such as media, healthcare, travel, finance, and retail. In all of these areas, data is the crucial parameter, and the main key to unlocking the value of industry. The book presents a range of intelligent algorithms that can be used to filter useful information in the above-mentioned application areas and efficiently solve particular problems. Its main objective is to raise awareness for this important field among students, researchers, and industrial practitioners.
Machine Learning Algorithms
DOWNLOAD
Author : Giuseppe Bonaccorso
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-07-24
Machine Learning Algorithms written by Giuseppe Bonaccorso and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-24 with Computers categories.
Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide About This Book Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide. Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation. Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide. Who This Book Is For This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here. What You Will Learn Acquaint yourself with important elements of Machine Learning Understand the feature selection and feature engineering process Assess performance and error trade-offs for Linear Regression Build a data model and understand how it works by using different types of algorithm Learn to tune the parameters of Support Vector machines Implement clusters to a dataset Explore the concept of Natural Processing Language and Recommendation Systems Create a ML architecture from scratch. In Detail As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge. In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously. On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem. Style and approach An easy-to-follow, step-by-step guide that will help you get to grips with real -world applications of Algorithms for Machine Learning.
Fundamentals And Methods Of Machine And Deep Learning
DOWNLOAD
Author : Pradeep Singh
language : en
Publisher: John Wiley & Sons
Release Date : 2022-03-02
Fundamentals And Methods Of Machine And Deep Learning written by Pradeep Singh and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-02 with Computers categories.
FUNDAMENTALS AND METHODS OF MACHINE AND DEEP LEARNING The book provides a practical approach by explaining the concepts of machine learning and deep learning algorithms, evaluation of methodology advances, and algorithm demonstrations with applications. Over the past two decades, the field of machine learning and its subfield deep learning have played a main role in software applications development. Also, in recent research studies, they are regarded as one of the disruptive technologies that will transform our future life, business, and the global economy. The recent explosion of digital data in a wide variety of domains, including science, engineering, Internet of Things, biomedical, healthcare, and many business sectors, has declared the era of big data, which cannot be analysed by classical statistics but by the more modern, robust machine learning and deep learning techniques. Since machine learning learns from data rather than by programming hard-coded decision rules, an attempt is being made to use machine learning to make computers that are able to solve problems like human experts in the field. The goal of this book is to present a??practical approach by explaining the concepts of machine learning and deep learning algorithms with applications. Supervised machine learning algorithms, ensemble machine learning algorithms, feature selection, deep learning techniques, and their applications are discussed. Also included in the eighteen chapters is unique information which provides a clear understanding of concepts by using algorithms and case studies illustrated with applications of machine learning and deep learning in different domains, including disease prediction, software defect prediction, online television analysis, medical image processing, etc. Each of the chapters briefly described below provides both a chosen approach and its implementation. Audience Researchers and engineers in artificial intelligence, computer scientists as well as software developers.