[PDF] Machine Learning And Artificial Intelligence Concepts Algorithms And Models - eBooks Review

Machine Learning And Artificial Intelligence Concepts Algorithms And Models


Machine Learning And Artificial Intelligence Concepts Algorithms And Models
DOWNLOAD

Download Machine Learning And Artificial Intelligence Concepts Algorithms And Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning And Artificial Intelligence Concepts Algorithms And Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Machine Learning And Artificial Intelligence


Machine Learning And Artificial Intelligence
DOWNLOAD
Author : Reza Rawassizadeh
language : en
Publisher:
Release Date : 2025-03-15

Machine Learning And Artificial Intelligence written by Reza Rawassizadeh and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-15 with Computers categories.


Mastering AI, machine learning, and data science often means piecing together concepts scattered across countless resources, statistics, and visualizations to foundational models and large language models. This book, the result of eight years of effort, brings it all together in one accessible, engaging package. It clarifies artificial intelligence and data science, blending core mathematical principles with a clear, reader-friendly approach. Unlike traditional textbooks that lean heavily on equations and mathematical formalization, the author starts with minimal prerequisites, layering deeper math as the reader progresses. Each concept, algorithm, or model is unpacked through clear, hands-on examples that build the reader's skills step by step. It strikes a balance between theoretical foundations and practical application, serving as both an academic reference and a practical guide. Furthermore, the book uses humor, casual language, and comics to make the challenging concepts and topics relatable and fun. Any resemblance between the jokes and real life is pure coincidence, and no offense is intended. Table of Contents Part I: Introduction & Preliminary Requirements Chapter 1: Basic Concepts Chapter 2: Visualization Chapter 3: Probability and Statistics Part II: Unsupervised Learning Chapter 4: Clustering Chapter 5: Frequent Itemset, Sequence Mining and Information Retrieval Part III: Data Engineering Chapter 6: Feature Engineering Chapter 7: Dimensionality Reduction and Data Decomposition Part IV: Supervised Learning Chapter 8: Regression Analysis Chapter 9: Classification Part V: Neural Network Chapter 10: Neural Networks and Deep Learning Chapter 11: Self-Supervised Deep Learning Chapter 12: Deep Learning Models and Applications (Text, Vision, and Audio) Part VI: Reinforcement Learning Chapter 13: Reinforcement Learning Part VII: Other Algorithms and Concepts Chapter 14: Making Lighter Neural Network and Machine Learning Models Chapter 15: Graph Mining Algorithms Chapter 16: Concepts and Challenges of Working with Data



Machine Learning And Artificial Intelligence Concepts Algorithms And Models


Machine Learning And Artificial Intelligence Concepts Algorithms And Models
DOWNLOAD
Author : Reza Rawassizadeh
language : en
Publisher: Reza Rawassizadeh
Release Date : 2025-03-15

Machine Learning And Artificial Intelligence Concepts Algorithms And Models written by Reza Rawassizadeh and has been published by Reza Rawassizadeh this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-15 with Computers categories.


Mastering AI, machine learning, and data science often means piecing together concepts scattered across countless resources—from statistics and visualizations to foundational models and large language models. This book, the result of eight years of effort, brings it all together in one accessible, engaging package. It clarifies artificial intelligence and data science, blending core mathematical principles with a clear, reader-friendly approach. Unlike traditional textbooks that lean heavily on equations and mathematical formalization, the author starts with minimal prerequisites, layering deeper math as the reader progresses. Each concept, algorithm, or model is unpacked through clear, hands-on examples that build the reader's skills step by step. It strikes a balance between theoretical foundations and practical application, serving as both an academic reference and a practical guide. Furthermore, the book uses humor, casual language, and comics to make the challenging concepts and topics relatable and fun. Any resemblance between the jokes and real life is pure coincidence, and no offense is intended.



Understanding Machine Learning


Understanding Machine Learning
DOWNLOAD
Author : Shai Shalev-Shwartz
language : en
Publisher: Cambridge University Press
Release Date : 2014-05-19

Understanding Machine Learning written by Shai Shalev-Shwartz and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-19 with Computers categories.


Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.



Proceedings Of The International Conference On Machine Learning


Proceedings Of The International Conference On Machine Learning
DOWNLOAD
Author : John Anderson
language : en
Publisher:
Release Date : 19??

Proceedings Of The International Conference On Machine Learning written by John Anderson and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 19?? with categories.




Interpretable Machine Learning


Interpretable Machine Learning
DOWNLOAD
Author : Christoph Molnar
language : en
Publisher: Lulu.com
Release Date : 2020

Interpretable Machine Learning written by Christoph Molnar and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.


This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.



Artificial Intelligence Concepts Methodologies Tools And Applications


Artificial Intelligence Concepts Methodologies Tools And Applications
DOWNLOAD
Author : Management Association, Information Resources
language : en
Publisher: IGI Global
Release Date : 2016-12-12

Artificial Intelligence Concepts Methodologies Tools And Applications written by Management Association, Information Resources and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.


Ongoing advancements in modern technology have led to significant developments in artificial intelligence. With the numerous applications available, it becomes imperative to conduct research and make further progress in this field. Artificial Intelligence: Concepts, Methodologies, Tools, and Applications provides a comprehensive overview of the latest breakthroughs and recent progress in artificial intelligence. Highlighting relevant technologies, uses, and techniques across various industries and settings, this publication is a pivotal reference source for researchers, professionals, academics, upper-level students, and practitioners interested in emerging perspectives in the field of artificial intelligence.



Artificial Intelligence Aided Materials Design


Artificial Intelligence Aided Materials Design
DOWNLOAD
Author : Rajesh Jha
language : en
Publisher: CRC Press
Release Date : 2022-03-15

Artificial Intelligence Aided Materials Design written by Rajesh Jha and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-15 with Technology & Engineering categories.


This book describes the application of artificial intelligence (AI)/machine learning (ML) concepts to develop predictive models that can be used to design alloy materials, including hard and soft magnetic alloys, nickel-base superalloys, titanium-base alloys, and aluminum-base alloys. Readers new to AI/ML algorithms can use this book as a starting point and use the MATLAB® and Python implementation of AI/ML algorithms through included case studies. Experienced AI/ML researchers who want to try new algorithms can use this book and study the case studies for reference. Offers advantages and limitations of several AI concepts and their proper implementation in various data types generated through experiments and computer simulations and from industries in different file formats Helps readers to develop predictive models through AI/ML algorithms by writing their own computer code or using resources where they do not have to write code Covers downloadable resources such as MATLAB GUI/APP and Python implementation that can be used on common mobile devices Discusses the CALPHAD approach and ways to use data generated from it Features a chapter on metallurgical/materials concepts to help readers understand the case studies and thus proper implementation of AI/ML algorithms under the framework of data-driven materials science Uses case studies to examine the importance of using unsupervised machine learning algorithms in determining patterns in datasets This book is written for materials scientists and metallurgists interested in the application of AI, ML, and data science in the development of new materials.



Machine Learning And Data Science Blueprints For Finance


Machine Learning And Data Science Blueprints For Finance
DOWNLOAD
Author : Hariom Tatsat
language : en
Publisher: O'Reilly Media
Release Date : 2020

Machine Learning And Data Science Blueprints For Finance written by Hariom Tatsat and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Finance categories.


Machine learning and data science will significantly transform the finance industry in the next few years. With this practical guide, professionals at hedge funds, investment and retail banks, and fintech firms will learn how to build ML algorithms crucial to this industry. You'll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP).



Hands On Artificial Intelligence For Beginners


Hands On Artificial Intelligence For Beginners
DOWNLOAD
Author : Patrick D. Smith
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-10-31

Hands On Artificial Intelligence For Beginners written by Patrick D. Smith and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-31 with Computers categories.


Grasp the fundamentals of Artificial Intelligence and build your own intelligent systems with ease Key FeaturesEnter the world of AI with the help of solid concepts and real-world use casesExplore AI components to build real-world automated intelligenceBecome well versed with machine learning and deep learning conceptsBook Description Virtual Assistants, such as Alexa and Siri, process our requests, Google's cars have started to read addresses, and Amazon's prices and Netflix's recommended videos are decided by AI. Artificial Intelligence is one of the most exciting technologies and is becoming increasingly significant in the modern world. Hands-On Artificial Intelligence for Beginners will teach you what Artificial Intelligence is and how to design and build intelligent applications. This book will teach you to harness packages such as TensorFlow in order to create powerful AI systems. You will begin with reviewing the recent changes in AI and learning how artificial neural networks (ANNs) have enabled more intelligent AI. You'll explore feedforward, recurrent, convolutional, and generative neural networks (FFNNs, RNNs, CNNs, and GNNs), as well as reinforcement learning methods. In the concluding chapters, you'll learn how to implement these methods for a variety of tasks, such as generating text for chatbots, and playing board and video games. By the end of this book, you will be able to understand exactly what you need to consider when optimizing ANNs and how to deploy and maintain AI applications. What you will learnUse TensorFlow packages to create AI systemsBuild feedforward, convolutional, and recurrent neural networksImplement generative models for text generationBuild reinforcement learning algorithms to play gamesAssemble RNNs, CNNs, and decoders to create an intelligent assistantUtilize RNNs to predict stock market behaviorCreate and scale training pipelines and deployment architectures for AI systemsWho this book is for This book is designed for beginners in AI, aspiring AI developers, as well as machine learning enthusiasts with an interest in leveraging various algorithms to build powerful AI applications.



Efficient Learning Machines


Efficient Learning Machines
DOWNLOAD
Author : Mariette Awad
language : en
Publisher: Apress
Release Date : 2015-04-27

Efficient Learning Machines written by Mariette Awad and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-04-27 with Computers categories.


Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions. Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms. Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning.