Machine Learning And Artificial Intelligence In Geosciences

DOWNLOAD
Download Machine Learning And Artificial Intelligence In Geosciences PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning And Artificial Intelligence In Geosciences book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Machine Learning And Artificial Intelligence In Geosciences
DOWNLOAD
Author :
language : en
Publisher: Academic Press
Release Date : 2020-09-22
Machine Learning And Artificial Intelligence In Geosciences written by and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-22 with Science categories.
Advances in Geophysics, Volume 61 - Machine Learning and Artificial Intelligence in Geosciences, the latest release in this highly-respected publication in the field of geophysics, contains new chapters on a variety of topics, including a historical review on the development of machine learning, machine learning to investigate fault rupture on various scales, a review on machine learning techniques to describe fractured media, signal augmentation to improve the generalization of deep neural networks, deep generator priors for Bayesian seismic inversion, as well as a review on homogenization for seismology, and more. - Provides high-level reviews of the latest innovations in geophysics - Written by recognized experts in the field - Presents an essential publication for researchers in all fields of geophysics
Deep Learning For The Earth Sciences
DOWNLOAD
Author : Gustau Camps-Valls
language : en
Publisher: John Wiley & Sons
Release Date : 2021-08-18
Deep Learning For The Earth Sciences written by Gustau Camps-Valls and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-18 with Technology & Engineering categories.
DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.
Machine Learning In The Oil And Gas Industry
DOWNLOAD
Author : Yogendra Narayan Pandey
language : en
Publisher: Apress
Release Date : 2020-11-03
Machine Learning In The Oil And Gas Industry written by Yogendra Narayan Pandey and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-03 with Computers categories.
Apply machine and deep learning to solve some of the challenges in the oil and gas industry. The book begins with a brief discussion of the oil and gas exploration and production life cycle in the context of data flow through the different stages of industry operations. This leads to a survey of some interesting problems, which are good candidates for applying machine and deep learning approaches. The initial chapters provide a primer on the Python programming language used for implementing the algorithms; this is followed by an overview of supervised and unsupervised machine learning concepts. The authors provide industry examples using open source data sets along with practical explanations of the algorithms, without diving too deep into the theoretical aspects of the algorithms employed. Machine Learning in the Oil and Gas Industry covers problems encompassing diverse industry topics, including geophysics (seismic interpretation), geological modeling, reservoir engineering, and production engineering. Throughout the book, the emphasis is on providing a practical approach with step-by-step explanations and code examples for implementing machine and deep learning algorithms for solving real-life problems in the oil and gas industry. What You Will Learn Understanding the end-to-end industry life cycle and flow of data in the industrial operations of the oil and gas industry Get the basic concepts of computer programming and machine and deep learning required for implementing the algorithms used Study interesting industry problems that are good candidates for being solved by machine and deep learning Discover the practical considerations and challenges for executing machine and deep learning projects in the oil and gas industry Who This Book Is For Professionals in the oil and gas industry who can benefit from a practical understanding of the machine and deep learning approach to solving real-life problems.
Quantitative Geosciences Data Analytics Geostatistics Reservoir Characterization And Modeling
DOWNLOAD
Author : Y. Z. Ma
language : en
Publisher: Springer
Release Date : 2019-07-15
Quantitative Geosciences Data Analytics Geostatistics Reservoir Characterization And Modeling written by Y. Z. Ma and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-15 with Technology & Engineering categories.
Earth science is becoming increasingly quantitative in the digital age. Quantification of geoscience and engineering problems underpins many of the applications of big data and artificial intelligence. This book presents quantitative geosciences in three parts. Part 1 presents data analytics using probability, statistical and machine-learning methods. Part 2 covers reservoir characterization using several geoscience disciplines: including geology, geophysics, petrophysics and geostatistics. Part 3 treats reservoir modeling, resource evaluation and uncertainty analysis using integrated geoscience, engineering and geostatistical methods. As the petroleum industry is heading towards operating oil fields digitally, a multidisciplinary skillset is a must for geoscientists who need to use data analytics to resolve inconsistencies in various sources of data, model reservoir properties, evaluate uncertainties, and quantify risk for decision making. This book intends to serve as a bridge for advancing the multidisciplinary integration for digital fields. The goal is to move beyond using quantitative methods individually to an integrated descriptive-quantitative analysis. In big data, everything tells us something, but nothing tells us everything. This book emphasizes the integrated, multidisciplinary solutions for practical problems in resource evaluation and field development.
Advanced Time Series Analysis In Geosciences
DOWNLOAD
Author : Flavio Cannavo’
language : en
Publisher: Frontiers Media SA
Release Date : 2021-05-12
Advanced Time Series Analysis In Geosciences written by Flavio Cannavo’ and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-12 with Science categories.
Computers In Earth And Environmental Sciences
DOWNLOAD
Author : Hamid Reza Pourghasemi
language : en
Publisher: Elsevier
Release Date : 2021-09-22
Computers In Earth And Environmental Sciences written by Hamid Reza Pourghasemi and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-22 with Science categories.
Computers in Earth and Environmental Sciences: Artificial Intelligence and Advanced Technologies in Hazards and Risk Management addresses the need for a comprehensive book that focuses on multi-hazard assessments, natural and manmade hazards, and risk management using new methods and technologies that employ GIS, artificial intelligence, spatial modeling, machine learning tools and meta-heuristic techniques. The book is clearly organized into four parts that cover natural hazards, environmental hazards, advanced tools and technologies in risk management, and future challenges in computer applications to hazards and risk management. Researchers and professionals in Earth and Environmental Science who require the latest technologies and advances in hazards, remote sensing, geosciences, spatial modeling and machine learning will find this book to be an invaluable source of information on the latest tools and technologies available. - Covers advanced tools and technologies in risk management of hazards in both the Earth and Environmental Sciences - Details the benefits and applications of various technologies to assist researchers in choosing the most appropriate techniques for purpose - Expansively covers specific future challenges in the use of computers in Earth and Environmental Science - Includes case studies that detail the applications of the discussed technologies down to individual hazards
Knowledge Guided Machine Learning
DOWNLOAD
Author : Anuj Karpatne
language : en
Publisher: CRC Press
Release Date : 2022-08-15
Knowledge Guided Machine Learning written by Anuj Karpatne and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-15 with Business & Economics categories.
Given their tremendous success in commercial applications, machine learning (ML) models are increasingly being considered as alternatives to science-based models in many disciplines. Yet, these "black-box" ML models have found limited success due to their inability to work well in the presence of limited training data and generalize to unseen scenarios. As a result, there is a growing interest in the scientific community on creating a new generation of methods that integrate scientific knowledge in ML frameworks. This emerging field, called scientific knowledge-guided ML (KGML), seeks a distinct departure from existing "data-only" or "scientific knowledge-only" methods to use knowledge and data at an equal footing. Indeed, KGML involves diverse scientific and ML communities, where researchers and practitioners from various backgrounds and application domains are continually adding richness to the problem formulations and research methods in this emerging field. Knowledge Guided Machine Learning: Accelerating Discovery using Scientific Knowledge and Data provides an introduction to this rapidly growing field by discussing some of the common themes of research in KGML using illustrative examples, case studies, and reviews from diverse application domains and research communities as book chapters by leading researchers. KEY FEATURES First-of-its-kind book in an emerging area of research that is gaining widespread attention in the scientific and data science fields Accessible to a broad audience in data science and scientific and engineering fields Provides a coherent organizational structure to the problem formulations and research methods in the emerging field of KGML using illustrative examples from diverse application domains Contains chapters by leading researchers, which illustrate the cutting-edge research trends, opportunities, and challenges in KGML research from multiple perspectives Enables cross-pollination of KGML problem formulations and research methods across disciplines Highlights critical gaps that require further investigation by the broader community of researchers and practitioners to realize the full potential of KGML
Ai And Cognitive Science 90
DOWNLOAD
Author : Michael F. McTear
language : en
Publisher:
Release Date : 2014-01-15
Ai And Cognitive Science 90 written by Michael F. McTear and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-01-15 with categories.
Clouds And Climate
DOWNLOAD
Author : A. Pier Siebesma
language : en
Publisher: Cambridge University Press
Release Date : 2020-08-20
Clouds And Climate written by A. Pier Siebesma and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-20 with Mathematics categories.
Comprehensive overview of research on clouds and their role in our present and future climate, for advanced students and researchers.
Artificial Intelligence In Earth Science
DOWNLOAD
Author : Ziheng Sun
language : en
Publisher: Elsevier
Release Date : 2023-04-27
Artificial Intelligence In Earth Science written by Ziheng Sun and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-27 with Science categories.
Artificial Intelligence in Earth Science: Best Practices and Fundamental Challenges provides a comprehensive, step-by-step guide to AI workflows for solving problems in Earth Science. The book focuses on the most challenging problems in applying AI in Earth system sciences, such as training data preparation, model selection, hyperparameter tuning, model structure optimization, spatiotemporal generalization, transforming model results into products, and explaining trained models. In addition, it provides full-stack workflow tutorials to help walk readers through the whole process, regardless of previous AI experience. The book tackles the complexity of Earth system problems in AI engineering, fully guiding geoscientists who are planning to implement AI in their daily work. - Provides practical, step-by-step guides for Earth Scientists who are interested in implementing AI techniques in their work - Features case studies to show real-world examples of techniques described in the book - Includes additional elements to help readers who are new to AI, including end-of-chapter, key concept bulleted lists that concisely cover key concepts in the chapter