[PDF] Machine Learning And Knowledge Discovery In Databases Applied Data Science Track - eBooks Review

Machine Learning And Knowledge Discovery In Databases Applied Data Science Track


Machine Learning And Knowledge Discovery In Databases Applied Data Science Track
DOWNLOAD

Download Machine Learning And Knowledge Discovery In Databases Applied Data Science Track PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning And Knowledge Discovery In Databases Applied Data Science Track book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Machine Learning And Knowledge Discovery In Databases Applied Data Science Track


Machine Learning And Knowledge Discovery In Databases Applied Data Science Track
DOWNLOAD
Author : Albert Bifet
language : en
Publisher: Springer Nature
Release Date : 2024-09-01

Machine Learning And Knowledge Discovery In Databases Applied Data Science Track written by Albert Bifet and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-01 with Computers categories.


This multi-volume set, LNAI 14941 to LNAI 14950, constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2024, held in Vilnius, Lithuania, in September 2024. The papers presented in these proceedings are from the following three conference tracks: - Research Track: The 202 full papers presented here, from this track, were carefully reviewed and selected from 826 submissions. These papers are present in the following volumes: Part I, II, III, IV, V, VI, VII, VIII. Demo Track: The 14 papers presented here, from this track, were selected from 30 submissions. These papers are present in the following volume: Part VIII. Applied Data Science Track: The 56 full papers presented here, from this track, were carefully reviewed and selected from 224 submissions. These papers are present in the following volumes: Part IX and Part X.



Machine Learning And Knowledge Discovery In Databases Applied Data Science Track


Machine Learning And Knowledge Discovery In Databases Applied Data Science Track
DOWNLOAD
Author : Yuxiao Dong
language : en
Publisher: Springer Nature
Release Date : 2021-09-09

Machine Learning And Knowledge Discovery In Databases Applied Data Science Track written by Yuxiao Dong and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-09 with Computers categories.


The multi-volume set LNAI 12975 until 12979 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2021, which was held during September 13-17, 2021. The conference was originally planned to take place in Bilbao, Spain, but changed to an online event due to the COVID-19 pandemic. The 210 full papers presented in these proceedings were carefully reviewed and selected from a total of 869 submissions. The volumes are organized in topical sections as follows: Research Track: Part I: Online learning; reinforcement learning; time series, streams, and sequence models; transfer and multi-task learning; semi-supervised and few-shot learning; learning algorithms and applications. Part II: Generative models; algorithms and learning theory; graphs and networks; interpretation, explainability, transparency, safety. Part III: Generative models; search and optimization; supervised learning; text mining and natural language processing; image processing, computer vision and visual analytics. Applied Data Science Track: Part IV: Anomaly detection and malware; spatio-temporal data; e-commerce and finance; healthcare and medical applications (including Covid); mobility and transportation. Part V: Automating machine learning, optimization, and feature engineering; machine learning based simulations and knowledge discovery; recommender systems and behavior modeling; natural language processing; remote sensing, image and video processing; social media.



Machine Learning And Knowledge Discovery In Databases Applied Data Science And Demo Track


Machine Learning And Knowledge Discovery In Databases Applied Data Science And Demo Track
DOWNLOAD
Author : Gianmarco De Francisci Morales
language : en
Publisher: Springer Nature
Release Date : 2023-09-16

Machine Learning And Knowledge Discovery In Databases Applied Data Science And Demo Track written by Gianmarco De Francisci Morales and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-16 with Computers categories.


The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023. The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows: Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering. Part II: ​Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning. Part III: ​Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning. Part IV: ​Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning. Part V: ​Robustness; Time Series; Transfer and Multitask Learning. Part VI: ​Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval. ​Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.



Machine Learning And Knowledge Discovery In Databases Applied Data Science And Demo Track


Machine Learning And Knowledge Discovery In Databases Applied Data Science And Demo Track
DOWNLOAD
Author : Yuxiao Dong
language : en
Publisher: Springer Nature
Release Date : 2021-02-24

Machine Learning And Knowledge Discovery In Databases Applied Data Science And Demo Track written by Yuxiao Dong and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-24 with Computers categories.


The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic. The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings. The volumes are organized in topical sections as follows: Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and autoencoders; domain adaptation; sketching, sampling, and binary projections; graphical models and causality; (spatio-) temporal data and recurrent neural networks; collaborative filtering and matrix completion. Part II: deep learning optimization and theory; active learning; adversarial learning; federated learning; Kernel methods and online learning; partial label learning; reinforcement learning; transfer and multi-task learning; Bayesian optimization and few-shot learning. Part III: Combinatorial optimization; large-scale optimization and differential privacy; boosting and ensemble methods; Bayesian methods; architecture of neural networks; graph neural networks; Gaussian processes; computer vision and image processing; natural language processing; bioinformatics. Part IV: applied data science: recommendation; applied data science: anomaly detection; applied data science: Web mining; applied data science: transportation; applied data science: activity recognition; applied data science: hardware and manufacturing; applied data science: spatiotemporal data. Part V: applied data science: social good; applied data science: healthcare; applied data science: e-commerce and finance; applied data science: computational social science; applied data science: sports; demo track.



Machine Learning And Knowledge Discovery In Databases Research Track


Machine Learning And Knowledge Discovery In Databases Research Track
DOWNLOAD
Author : Danai Koutra
language : en
Publisher: Springer Nature
Release Date : 2023-09-17

Machine Learning And Knowledge Discovery In Databases Research Track written by Danai Koutra and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-17 with Computers categories.


The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023. The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows: Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering. Part II: ​Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning. Part III: ​Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning. Part IV: ​Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning. Part V: ​Robustness; Time Series; Transfer and Multitask Learning. Part VI: ​Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval. ​Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.



Machine Learning And Knowledge Discovery In Databases Research Track


Machine Learning And Knowledge Discovery In Databases Research Track
DOWNLOAD
Author : Albert Bifet
language : en
Publisher: Springer Nature
Release Date : 2024-09-01

Machine Learning And Knowledge Discovery In Databases Research Track written by Albert Bifet and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-01 with Computers categories.


This multi-volume set, LNAI 14941 to LNAI 14950, constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2024, held in Vilnius, Lithuania, in September 2024. The papers presented in these proceedings are from the following three conference tracks: - Research Track: The 202 full papers presented here, from this track, were carefully reviewed and selected from 826 submissions. These papers are present in the following volumes: Part I, II, III, IV, V, VI, VII, VIII. Demo Track: The 14 papers presented here, from this track, were selected from 30 submissions. These papers are present in the following volume: Part VIII. Applied Data Science Track: The 56 full papers presented here, from this track, were carefully reviewed and selected from 224 submissions. These papers are present in the following volumes: Part IX and Part X.



Machine Learning And Knowledge Discovery In Databases Research Track And Demo Track


Machine Learning And Knowledge Discovery In Databases Research Track And Demo Track
DOWNLOAD
Author : Albert Bifet
language : en
Publisher: Springer Nature
Release Date : 2024-09-01

Machine Learning And Knowledge Discovery In Databases Research Track And Demo Track written by Albert Bifet and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-01 with Computers categories.


This multi-volume set, LNAI 14941 to LNAI 14950, constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2024, held in Vilnius, Lithuania, in September 2024. The papers presented in these proceedings are from the following three conference tracks: - Research Track: The 202 full papers presented here, from this track, were carefully reviewed and selected from 826 submissions. These papers are present in the following volumes: Part I, II, III, IV, V, VI, VII, VIII. Demo Track: The 14 papers presented here, from this track, were selected from 30 submissions. These papers are present in the following volume: Part VIII. Applied Data Science Track: The 56 full papers presented here, from this track, were carefully reviewed and selected from 224 submissions. These papers are present in the following volumes: Part IX and Part X. Chapter “1 and 24” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.



Machine Learning And Knowledge Discovery In Databases


Machine Learning And Knowledge Discovery In Databases
DOWNLOAD
Author : Ulf Brefeld
language : en
Publisher: Springer Nature
Release Date : 2020-04-30

Machine Learning And Knowledge Discovery In Databases written by Ulf Brefeld and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-30 with Computers categories.


The three volume proceedings LNAI 11906 – 11908 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, held in Würzburg, Germany, in September 2019. The total of 130 regular papers presented in these volumes was carefully reviewed and selected from 733 submissions; there are 10 papers in the demo track. The contributions were organized in topical sections named as follows: Part I: pattern mining; clustering, anomaly and outlier detection, and autoencoders; dimensionality reduction and feature selection; social networks and graphs; decision trees, interpretability, and causality; strings and streams; privacy and security; optimization. Part II: supervised learning; multi-label learning; large-scale learning; deep learning; probabilistic models; natural language processing. Part III: reinforcement learning and bandits; ranking; applied data science: computer vision and explanation; applied data science: healthcare; applied data science: e-commerce, finance, and advertising; applied data science: rich data; applied data science: applications; demo track.



Machine Learning And Knowledge Discovery In Databases Research Track


Machine Learning And Knowledge Discovery In Databases Research Track
DOWNLOAD
Author : Nuria Oliver
language : en
Publisher: Springer Nature
Release Date : 2021-09-09

Machine Learning And Knowledge Discovery In Databases Research Track written by Nuria Oliver and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-09 with Computers categories.


The multi-volume set LNAI 12975 until 12979 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2021, which was held during September 13-17, 2021. The conference was originally planned to take place in Bilbao, Spain, but changed to an online event due to the COVID-19 pandemic. The 210 full papers presented in these proceedings were carefully reviewed and selected from a total of 869 submissions. The volumes are organized in topical sections as follows: Research Track: Part I: Online learning; reinforcement learning; time series, streams, and sequence models; transfer and multi-task learning; semi-supervised and few-shot learning; learning algorithms and applications. Part II: Generative models; algorithms and learning theory; graphs and networks; interpretation, explainability, transparency, safety. Part III: Generative models; search and optimization; supervised learning; text mining and natural language processing; image processing, computer vision and visual analytics. Applied Data Science Track: Part IV: Anomaly detection and malware; spatio-temporal data; e-commerce and finance; healthcare and medical applications (including Covid); mobility and transportation. Part V: Automating machine learning, optimization, and feature engineering; machine learning based simulations and knowledge discovery; recommender systems and behavior modeling; natural language processing; remote sensing, image and video processing; social media.



Machine Learning And Knowledge Discovery In Databases


Machine Learning And Knowledge Discovery In Databases
DOWNLOAD
Author : Yasemin Altun
language : en
Publisher: Springer
Release Date : 2017-12-29

Machine Learning And Knowledge Discovery In Databases written by Yasemin Altun and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-29 with Computers categories.


The three volume proceedings LNAI 10534 – 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017. The total of 101 regular papers presented in part I and part II was carefully reviewed and selected from 364 submissions; there are 47 papers in the applied data science, nectar and demo track. The contributions were organized in topical sections named as follows: Part I: anomaly detection; computer vision; ensembles and meta learning; feature selection and extraction; kernel methods; learning and optimization, matrix and tensor factorization; networks and graphs; neural networks and deep learning. Part II: pattern and sequence mining; privacy and security; probabilistic models and methods; recommendation; regression; reinforcement learning; subgroup discovery; time series and streams; transfer and multi-task learning; unsupervised and semisupervised learning. Part III: applied data science track; nectar track; and demo track.