Machine Learning And Knowledge Extraction

DOWNLOAD
Download Machine Learning And Knowledge Extraction PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning And Knowledge Extraction book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Machine Learning And Knowledge Extraction
DOWNLOAD
Author : Andreas Holzinger
language : en
Publisher: Springer Nature
Release Date : 2020-08-19
Machine Learning And Knowledge Extraction written by Andreas Holzinger and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-19 with Computers categories.
This book constitutes the refereed proceedings of the 4th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2020, held in Dublin, Ireland, in August 2020. The 30 revised full papers presented were carefully reviewed and selected from 140 submissions. The cross-domain integration and appraisal of different fields provides an atmosphere to foster different perspectives and opinions; it will offer a platform for novel ideas and a fresh look on the methodologies to put these ideas into business for the benefit of humanity. Due to the Corona pandemic CD-MAKE 2020 was held as a virtual event.
Machine Learning And Knowledge Extraction
DOWNLOAD
Author : Andreas Holzinger
language : en
Publisher: Springer
Release Date : 2018-08-23
Machine Learning And Knowledge Extraction written by Andreas Holzinger and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-23 with Computers categories.
This book constitutes the refereed proceedings of the IFIP TC 5, WG 8.4, 8.9, 12.9 International Cross-Domain Conference for Machine Learning and Knowledge Extraction, CD-MAKE 2018, held in Hamburg, Germany, in September 2018. The 25 revised full papers presented were carefully reviewed and selected from 45 submissions. The papers are clustered under the following topical sections: MAKE-Main Track, MAKE-Text, MAKE-Smart Factory, MAKE-Topology, and MAKE Explainable AI.
Machine Learning And Knowledge Extraction
DOWNLOAD
Author : Andreas Holzinger
language : en
Publisher: Springer Nature
Release Date : 2019-08-22
Machine Learning And Knowledge Extraction written by Andreas Holzinger and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-22 with Computers categories.
This book constitutes the refereed proceedings of the IFIP TC 5, TC 12, WG 8.4, 8.9, 12.9 International Cross-Domain Conference for Machine Learning and Knowledge Extraction, CD-MAKE 2019, held in Canterbury, UK, in August 2019. The 25 revised full papers presented were carefully reviewed and selected from 45 submissions. The cross-domain integration and appraisal of different fields provides an atmosphere to foster different perspectives and opinions; it will offer a platform for novel ideas and a fresh look on the methodologies to put these ideas into business for the benefit of humanity.
Towards Integrative Machine Learning And Knowledge Extraction
DOWNLOAD
Author : Andreas Holzinger
language : en
Publisher: Springer
Release Date : 2017-10-27
Towards Integrative Machine Learning And Knowledge Extraction written by Andreas Holzinger and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-27 with Computers categories.
The BIRS Workshop “Advances in Interactive Knowledge Discovery and Data Mining in Complex and Big Data Sets” (15w2181), held in July 2015 in Banff, Canada, was dedicated to stimulating a cross-domain integrative machine-learning approach and appraisal of “hot topics” toward tackling the grand challenge of reaching a level of useful and useable computational intelligence with a focus on real-world problems, such as in the health domain. This encompasses learning from prior data, extracting and discovering knowledge, generalizing the results, fighting the curse of dimensionality, and ultimately disentangling the underlying explanatory factors in complex data, i.e., to make sense of data within the context of the application domain. The workshop aimed to contribute advancements in promising novel areas such as at the intersection of machine learning and topological data analysis. History has shown that most often the overlapping areas at intersections of seemingly disparate fields are key for the stimulation of new insights and further advances. This is particularly true for the extremely broad field of machine learning.
Machine Learning For Text
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer
Release Date : 2018-03-19
Machine Learning For Text written by Charu C. Aggarwal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-19 with Computers categories.
Text analytics is a field that lies on the interface of information retrieval,machine learning, and natural language processing, and this textbook carefully covers a coherently organized framework drawn from these intersecting topics. The chapters of this textbook is organized into three categories: - Basic algorithms: Chapters 1 through 7 discuss the classical algorithms for machine learning from text such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis. - Domain-sensitive mining: Chapters 8 and 9 discuss the learning methods from text when combined with different domains such as multimedia and the Web. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods. - Sequence-centric mining: Chapters 10 through 14 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, text summarization, information extraction, opinion mining, text segmentation, and event detection. This textbook covers machine learning topics for text in detail. Since the coverage is extensive,multiple courses can be offered from the same book, depending on course level. Even though the presentation is text-centric, Chapters 3 to 7 cover machine learning algorithms that are often used indomains beyond text data. Therefore, the book can be used to offer courses not just in text analytics but also from the broader perspective of machine learning (with text as a backdrop). This textbook targets graduate students in computer science, as well as researchers, professors, and industrial practitioners working in these related fields. This textbook is accompanied with a solution manual for classroom teaching.
Content Based Image Classification
DOWNLOAD
Author : Rik Das
language : en
Publisher: CRC Press
Release Date : 2020-12-17
Content Based Image Classification written by Rik Das and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-17 with Computers categories.
Content-Based Image Classification: Efficient Machine Learning Using Robust Feature Extraction Techniques is a comprehensive guide to research with invaluable image data. Social Science Research Network has revealed that 65% of people are visual learners. Research data provided by Hyerle (2000) has clearly shown 90% of information in the human brain is visual. Thus, it is no wonder that visual information processing in the brain is 60,000 times faster than text-based information (3M Corporation, 2001). Recently, we have witnessed a significant surge in conversing with images due to the popularity of social networking platforms. The other reason for embracing usage of image data is the mass availability of high-resolution cellphone cameras. Wide usage of image data in diversified application areas including medical science, media, sports, remote sensing, and so on, has spurred the need for further research in optimizing archival, maintenance, and retrieval of appropriate image content to leverage data-driven decision-making. This book demonstrates several techniques of image processing to represent image data in a desired format for information identification. It discusses the application of machine learning and deep learning for identifying and categorizing appropriate image data helpful in designing automated decision support systems. The book offers comprehensive coverage of the most essential topics, including: Image feature extraction with novel handcrafted techniques (traditional feature extraction) Image feature extraction with automated techniques (representation learning with CNNs) Significance of fusion-based approaches in enhancing classification accuracy MATLAB® codes for implementing the techniques Use of the Open Access data mining tool WEKA for multiple tasks The book is intended for budding researchers, technocrats, engineering students, and machine learning/deep learning enthusiasts who are willing to start their computer vision journey with content-based image recognition. The readers will get a clear picture of the essentials for transforming the image data into valuable means for insight generation. Readers will learn coding techniques necessary to propose novel mechanisms and disruptive approaches. The WEKA guide provided is beneficial for those uncomfortable coding for machine learning algorithms. The WEKA tool assists the learner in implementing machine learning algorithms with the click of a button. Thus, this book will be a stepping-stone for your machine learning journey. Please visit the author's website for any further guidance at https://www.rikdas.com/
Machine Learning For Health Informatics
DOWNLOAD
Author : Andreas Holzinger
language : en
Publisher: Springer
Release Date : 2016-12-09
Machine Learning For Health Informatics written by Andreas Holzinger and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-09 with Computers categories.
Machine learning (ML) is the fastest growing field in computer science, and Health Informatics (HI) is amongst the greatest application challenges, providing future benefits in improved medical diagnoses, disease analyses, and pharmaceutical development. However, successful ML for HI needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization. Tackling complex challenges needs both disciplinary excellence and cross-disciplinary networking without any boundaries. Following the HCI-KDD approach, in combining the best of two worlds, it is aimed to support human intelligence with machine intelligence. This state-of-the-art survey is an output of the international HCI-KDD expert network and features 22 carefully selected and peer-reviewed chapters on hot topics in machine learning for health informatics; they discuss open problems and future challenges in order to stimulate further research and international progress in this field.
Machine Learning And Knowledge Extraction
DOWNLOAD
Author : Andreas Holzinger
language : en
Publisher: Springer Nature
Release Date : 2021-08-11
Machine Learning And Knowledge Extraction written by Andreas Holzinger and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-11 with Computers categories.
This book constitutes the refereed proceedings of the 5th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2021, held in virtually in August 2021. The 20 full papers and 2 short papers presented were carefully reviewed and selected from 48 submissions. The cross-domain integration and appraisal of different fields provides an atmosphere to foster different perspectives and opinions; it will offer a platform for novel ideas and a fresh look on the methodologies to put these ideas into business for the benefit of humanity.