Machine Learning For Factor Investing
DOWNLOAD
Download Machine Learning For Factor Investing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning For Factor Investing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Machine Learning For Factor Investing R Version
DOWNLOAD
Author : Guillaume Coqueret
language : en
Publisher: CRC Press
Release Date : 2020-08-31
Machine Learning For Factor Investing R Version written by Guillaume Coqueret and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-31 with Business & Economics categories.
Machine learning (ML) is progressively reshaping the fields of quantitative finance and algorithmic trading. ML tools are increasingly adopted by hedge funds and asset managers, notably for alpha signal generation and stocks selection. The technicality of the subject can make it hard for non-specialists to join the bandwagon, as the jargon and coding requirements may seem out of reach. Machine Learning for Factor Investing: R Version bridges this gap. It provides a comprehensive tour of modern ML-based investment strategies that rely on firm characteristics. The book covers a wide array of subjects which range from economic rationales to rigorous portfolio back-testing and encompass both data processing and model interpretability. Common supervised learning algorithms such as tree models and neural networks are explained in the context of style investing and the reader can also dig into more complex techniques like autoencoder asset returns, Bayesian additive trees, and causal models. All topics are illustrated with self-contained R code samples and snippets that are applied to a large public dataset that contains over 90 predictors. The material, along with the content of the book, is available online so that readers can reproduce and enhance the examples at their convenience. If you have even a basic knowledge of quantitative finance, this combination of theoretical concepts and practical illustrations will help you learn quickly and deepen your financial and technical expertise.
Machine Learning For Factor Investing
DOWNLOAD
Author : Guillaume Coqueret
language : en
Publisher: CRC Press
Release Date : 2023-08-08
Machine Learning For Factor Investing written by Guillaume Coqueret and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-08 with Mathematics categories.
Machine learning (ML) is progressively reshaping the fields of quantitative finance and algorithmic trading. ML tools are increasingly adopted by hedge funds and asset managers, notably for alpha signal generation and stocks selection. The technicality of the subject can make it hard for non-specialists to join the bandwagon, as the jargon and coding requirements may seem out-of-reach. Machine learning for factor investing: Python version bridges this gap. It provides a comprehensive tour of modern ML-based investment strategies that rely on firm characteristics. The book covers a wide array of subjects which range from economic rationales to rigorous portfolio back-testing and encompass both data processing and model interpretability. Common supervised learning algorithms such as tree models and neural networks are explained in the context of style investing and the reader can also dig into more complex techniques like autoencoder asset returns, Bayesian additive trees and causal models. All topics are illustrated with self-contained Python code samples and snippets that are applied to a large public dataset that contains over 90 predictors. The material is available online so that readers can reproduce and enhance the examples at their convenience. If you have even a basic knowledge of quantitative finance, this combination of theoretical concepts and practical illustrations will help you learn quickly and deepen your financial and technical expertise.
Machine Learning For Factor Investing
DOWNLOAD
Author : Guillaume Coqueret
language : en
Publisher:
Release Date : 2023
Machine Learning For Factor Investing written by Guillaume Coqueret and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023 with MATHEMATICS categories.
"Machine learning (ML) is progressively reshaping the fields of quantitative finance and algorithmic trading. ML tools are increasingly adopted by hedge funds and asset managers, notably for alpha signal generation and stocks selection. The technicality of the subject can make it hard for non-specialists to join the bandwagon, as the jargon and coding requirements may seem out-of-reach. Machine learning for factor investing: Python version bridges this gap. It provides a comprehensive tour of modern ML-based investment strategies that rely on firm characteristics. The book covers a wide array of subjects which range from economic rationales to rigorous portfolio back-testing and encompass both data processing and model interpretability. Common supervised learning algorithms such as tree models and neural networks are explained in the context of style investing and the reader can also dig into more complex techniques like autoencoder asset returns, Bayesian additive trees and causal models. All topics are illustrated with self-contained Python code samples and snippets that are applied to a large public dataset that contains over 90 predictors. The material, along with the content of the book, is available online so that readers can reproduce and enhance the examples at their convenience. If you have even a basic knowledge of quantitative finance, this combination of theoretical concepts and practical illustrations will help you learn quickly and deepen your financial and technical expertise"--
Navigating The Factor Zoo
DOWNLOAD
Author : Michael Zhang
language : en
Publisher: Taylor & Francis
Release Date : 2024-12-09
Navigating The Factor Zoo written by Michael Zhang and has been published by Taylor & Francis this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-09 with Business & Economics categories.
Bridging the gap between theoretical asset pricing and industry practices in factors and factor investing, Zhang et al. provides a comprehensive treatment of factors, along with industry insights on practical factor development. Chapters cover a wide array of topics, including the foundations of quantamentals, the intricacies of market beta, the significance of statistical moments, the principles of technical analysis, and the impact of market microstructure and liquidity on trading. Furthermore, it delves into the complexities of tail risk and behavioral finance, revealing how psychological factors affect market dynamics. The discussion extends to the sophisticated use of option trading data for predictive insights and the critical differentiation between outcome uncertainty and distribution uncertainty in financial decision-making. A standout feature of the book is its examination of machine learning's role in factor investing, detailing how it transforms data preprocessing, factor discovery, and model construction. Overall, this book provides a holistic view of contemporary financial markets, highlighting the challenges and opportunities in harnessing alternative data and machine learning to develop robust investment strategies. This book would appeal to investment management professionals and trainees. It will also be of use to graduate and upper undergraduate students in quantitative finance, factor investing, asset management and/or trading.
Causal Factor Investing
DOWNLOAD
Author : Marcos M. López de Prado
language : en
Publisher: Cambridge University Press
Release Date : 2023-11-09
Causal Factor Investing written by Marcos M. López de Prado and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-09 with Business & Economics categories.
Virtually all journal articles in the factor investing literature make associational claims, in denial of the causal content of factor models. Authors do not identify the causal graph consistent with the observed phenomenon, they justify their chosen model specification in terms of correlations, and they do not propose experiments for falsifying causal mechanisms. Absent a causal theory, their findings are likely false, due to rampant backtest overfitting and incorrect specification choices. This Element differentiates between type-A and type-B spurious claims, and explains how both types prevent factor investing from advancing beyond its current phenomenological stage. It analyzes the current state of causal confusion in the factor investing literature, and proposes solutions with the potential to transform factor investing into a truly scientific discipline. This title is also available as Open Access on Cambridge Core.
Machine Learning For Algorithmic Trading
DOWNLOAD
Author : Stefan Jansen
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-07-31
Machine Learning For Algorithmic Trading written by Stefan Jansen and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-31 with Business & Economics categories.
Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key Features Design, train, and evaluate machine learning algorithms that underpin automated trading strategies Create a research and strategy development process to apply predictive modeling to trading decisions Leverage NLP and deep learning to extract tradeable signals from market and alternative data Book DescriptionThe explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance.What you will learn Leverage market, fundamental, and alternative text and image data Research and evaluate alpha factors using statistics, Alphalens, and SHAP values Implement machine learning techniques to solve investment and trading problems Backtest and evaluate trading strategies based on machine learning using Zipline and Backtrader Optimize portfolio risk and performance analysis using pandas, NumPy, and pyfolio Create a pairs trading strategy based on cointegration for US equities and ETFs Train a gradient boosting model to predict intraday returns using AlgoSeek s high-quality trades and quotes data Who this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.
Quantitative Asset Management Factor Investing And Machine Learning For Institutional Investing
DOWNLOAD
Author : Michael Robbins
language : en
Publisher: McGraw Hill Professional
Release Date : 2023-06-24
Quantitative Asset Management Factor Investing And Machine Learning For Institutional Investing written by Michael Robbins and has been published by McGraw Hill Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-24 with Business & Economics categories.
Augment your asset allocation strategy with machine learning and factor investing for unprecedented returns and growth Whether you’re managing institutional portfolios or private wealth, Quantitative Asset Management will open your eyes to a new, more successful way of investing—one that harnesses the power of big data and artificial intelligence. This innovative guide walks you through everything you need to know to fully leverage these revolutionary tools. Written from the perspective of a seasoned financial investor making use of technology, it details proven investing methods, striking a rare balance between providing important technical information without burdening you with overly complex investing theory. Quantitative Asset Management is organized into four thematic sections: Part I reveals invaluable lessons for planning and governance of investment decision-making. Part 2 discusses quantitative financial modeling, covering important topics like overfitting, mitigating unrealistic assumptions, managing substitutions, enhancing minority classes, and missing data imputation. Part 3 shows how to develop a strategy into an investment product, including the alpha models, risk models, implementation, backtesting, and cost optimization. Part 4 explains how to measure performance, learn from mistakes, manage risk, and survive financial tragedies. With Quantitative Asset Management, you have everything you need to build your awareness of other markets, ask the right questions and answer them effectively, and drive steady profits even through times of great uncertainty.
Quantitative Portfolio Optimization
DOWNLOAD
Author : Miquel Noguer Alonso
language : en
Publisher: John Wiley & Sons
Release Date : 2025-01-22
Quantitative Portfolio Optimization written by Miquel Noguer Alonso and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-22 with Business & Economics categories.
Expert guidance on implementing quantitative portfolio optimization techniques In Quantitative Portfolio Optimization: Theory and Practice, renowned financial practitioner Miquel Noguer, alongside physicists Alberto Bueno Guerrero and Julian Antolin Camarena, who possess excellent knowledge in finance, delve into advanced mathematical techniques for portfolio optimization. The book covers a range of topics including mean-variance optimization, the Black-Litterman Model, risk parity and hierarchical risk parity, factor investing, methods based on moments, and robust optimization as well as machine learning and reinforcement technique. These techniques enable readers to develop a systematic, objective, and repeatable approach to investment decision-making, particularly in complex financial markets. Readers will gain insights into the associated mathematical models, statistical analyses, and computational algorithms for each method, allowing them to put these techniques into practice and identify the best possible mix of assets to maximize returns while minimizing risk. Topics explored in this book include: Specific drivers of return across asset classes Personal risk tolerance and it#s impact on ideal asses allocation The importance of weekly and monthly variance in the returns of specific securities Serving as a blueprint for solving portfolio optimization problems, Quantitative Portfolio Optimization: Theory and Practice is an essential resource for finance practitioners and individual investors It helps them stay on the cutting edge of modern portfolio theory and achieve the best returns on investments for themselves, their clients, and their organizations.
The Book Of Alternative Data
DOWNLOAD
Author : Alexander Denev
language : en
Publisher: John Wiley & Sons
Release Date : 2020-06-29
The Book Of Alternative Data written by Alexander Denev and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Business & Economics categories.
The first and only book to systematically address methodologies and processes of leveraging non-traditional information sources in the context of investing and risk management Harnessing non-traditional data sources to generate alpha, analyze markets, and forecast risk is a subject of intense interest for financial professionals. A growing number of regularly-held conferences on alternative data are being established, complemented by an upsurge in new papers on the subject. Alternative data is starting to be steadily incorporated by conventional institutional investors and risk managers throughout the financial world. Methodologies to analyze and extract value from alternative data, guidance on how to source data and integrate data flows within existing systems is currently not treated in literature. Filling this significant gap in knowledge, The Book of Alternative Data is the first and only book to offer a coherent, systematic treatment of the subject. This groundbreaking volume provides readers with a roadmap for navigating the complexities of an array of alternative data sources, and delivers the appropriate techniques to analyze them. The authors—leading experts in financial modeling, machine learning, and quantitative research and analytics—employ a step-by-step approach to guide readers through the dense jungle of generated data. A first-of-its kind treatment of alternative data types, sources, and methodologies, this innovative book: Provides an integrated modeling approach to extract value from multiple types of datasets Treats the processes needed to make alternative data signals operational Helps investors and risk managers rethink how they engage with alternative datasets Features practical use case studies in many different financial markets and real-world techniques Describes how to avoid potential pitfalls and missteps in starting the alternative data journey Explains how to integrate information from different datasets to maximize informational value The Book of Alternative Data is an indispensable resource for anyone wishing to analyze or monetize different non-traditional datasets, including Chief Investment Officers, Chief Risk Officers, risk professionals, investment professionals, traders, economists, and machine learning developers and users.
Computational Science Iccs 2019
DOWNLOAD
Author : João M. F. Rodrigues
language : en
Publisher: Springer
Release Date : 2019-06-07
Computational Science Iccs 2019 written by João M. F. Rodrigues and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-07 with Computers categories.
The five-volume set LNCS 11536, 11537, 11538, 11539 and 11540 constitutes the proceedings of the 19th International Conference on Computational Science, ICCS 2019, held in Faro, Portugal, in June 2019. The total of 65 full papers and 168 workshop papers presented in this book set were carefully reviewed and selected from 573 submissions (228 submissions to the main track and 345 submissions to the workshops). The papers were organized in topical sections named: Part I: ICCS Main Track Part II: ICCS Main Track; Track of Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Track of Agent-Based Simulations, Adaptive Algorithms and Solvers; Track of Applications of Matrix Methods in Artificial Intelligence and Machine Learning; Track of Architecture, Languages, Compilation and Hardware Support for Emerging and Heterogeneous Systems Part III: Track of Biomedical and Bioinformatics Challenges for Computer Science; Track of Classifier Learning from Difficult Data; Track of Computational Finance and Business Intelligence; Track of Computational Optimization, Modelling and Simulation; Track of Computational Science in IoT and Smart Systems Part IV: Track of Data-Driven Computational Sciences; Track of Machine Learning and Data Assimilation for Dynamical Systems; Track of Marine Computing in the Interconnected World for the Benefit of the Society; Track of Multiscale Modelling and Simulation; Track of Simulations of Flow and Transport: Modeling, Algorithms and Computation Part V: Track of Smart Systems: Computer Vision, Sensor Networks and Machine Learning; Track of Solving Problems with Uncertainties; Track of Teaching Computational Science; Poster Track ICCS 2019 Chapter “Comparing Domain-decomposition Methods for the Parallelization of Distributed Land Surface Models” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.