[PDF] Machine Learning For Practical Decision Making - eBooks Review

Machine Learning For Practical Decision Making


Machine Learning For Practical Decision Making
DOWNLOAD

Download Machine Learning For Practical Decision Making PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning For Practical Decision Making book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Machine Learning For Practical Decision Making


Machine Learning For Practical Decision Making
DOWNLOAD
Author : Christo El Morr
language : en
Publisher:
Release Date : 2022

Machine Learning For Practical Decision Making written by Christo El Morr and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with Decision making categories.


This book provides a hands-on introduction to Machine Learning (ML) from a multidisciplinary perspective that does not require a background in data science or computer science. It explains ML using simple language and a straightforward approach guided by real-world examples in areas such as health informatics, information technology, and business analytics. The book will help readers understand the various key algorithms, major software tools, and their applications. Moreover, through examples from the healthcare and business analytics fields, it demonstrates how and when ML can help them make better decisions in their disciplines. The book is chiefly intended for undergraduate and graduate students who are taking an introductory course in machine learning. It will also benefit data analysts and anyone interested in learning ML approaches.



Machine Learning For Practical Decision Making


Machine Learning For Practical Decision Making
DOWNLOAD
Author : Christo El Morr
language : en
Publisher: Springer Nature
Release Date : 2022-11-29

Machine Learning For Practical Decision Making written by Christo El Morr and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-29 with Business & Economics categories.


This book provides a hands-on introduction to Machine Learning (ML) from a multidisciplinary perspective that does not require a background in data science or computer science. It explains ML using simple language and a straightforward approach guided by real-world examples in areas such as health informatics, information technology, and business analytics. The book will help readers understand the various key algorithms, major software tools, and their applications. Moreover, through examples from the healthcare and business analytics fields, it demonstrates how and when ML can help them make better decisions in their disciplines. The book is chiefly intended for undergraduate and graduate students who are taking an introductory course in machine learning. It will also benefit data analysts and anyone interested in learning ML approaches.



Machine Learning For Decision Makers


Machine Learning For Decision Makers
DOWNLOAD
Author : Patanjali Kashyap
language : en
Publisher: Apress
Release Date : 2018-01-04

Machine Learning For Decision Makers written by Patanjali Kashyap and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-04 with Computers categories.


Take a deep dive into the concepts of machine learning as they apply to contemporary business and management. You will learn how machine learning techniques are used to solve fundamental and complex problems in society and industry. Machine Learning for Decision Makers serves as an excellent resource for establishing the relationship of machine learning with IoT, big data, and cognitive and cloud computing to give you an overview of how these modern areas of computing relate to each other. This book introduces a collection of the most important concepts of machine learning and sets them in context with other vital technologies that decision makers need to know about. These concepts span the process from envisioning the problem to applying machine-learning techniques to your particular situation. This discussion also provides an insight to help deploy the results to improve decision-making. The book usescase studies and jargon busting to help you grasp the theory of machine learning quickly. You'll soon gain the big picture of machine learning and how it fits with other cutting-edge IT services. This knowledge will give you confidence in your decisions for the future of your business. What You Will Learn Discover the machine learning, big data, and cloud and cognitive computing technology stack Gain insights into machine learning concepts and practices Understand business and enterprise decision-making using machine learning Absorb machine-learning best practices Who This Book Is For Managers tasked with making key decisions who want to learn how and when machine learning and related technologies can help them.



Machine Learning Explained A Practical Guide To Data Driven Decision Making


Machine Learning Explained A Practical Guide To Data Driven Decision Making
DOWNLOAD
Author : Abdelhamid ZAIDI
language : en
Publisher: Xoffencerpublication
Release Date : 2023-10-30

Machine Learning Explained A Practical Guide To Data Driven Decision Making written by Abdelhamid ZAIDI and has been published by Xoffencerpublication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-30 with Computers categories.


During the course of the process of making a choice, we rely on a variety of presumptions, premises, and the circumstances; all of this is directed by the goal that is related with the decision itself. However, the premises and the knowledge of the corporation are dependent on our data since they are an essential component of our organization as a system. The context and the assumptions are both external factors that are beyond the control of any decision maker. Both the background and the assumptions represent outside forces that are not within the control of any decision maker. A prominent example of a conceptual error is the misunderstanding that exists between data and information, which in reality correspond to entirely distinct ideas. This misunderstanding is a common occurrence. In point of fact, information and data cannot in any way be substituted for one another in any context. To put this another way, there is no guarantee that the data will be consistent, comparable, or traceable, despite the fact that we are able to collect data from a broad variety of distinct data sources. This is because there are so many diverse data sources. Because of this, in order for us to make a decision, we need to have a good comprehension of both the component that is presently being examined and the data that is linked with it at the present time. Only then will we be able to make an informed choice. The identification of the system itself is the first step that must be taken before any other aspects of the system, such as its boundaries, context, subsystems, feedback, inputs, and outputs, can be determined. Because of this, it is significant because, according to the point of view connected with general system theory, it is necessary to identify the system that is being discussed. In order to get a more in-depth understanding of the system, we must first begin by defining it. After that, we may proceed to quantifying each associated quality in order to achieve this goal. This would make it possible for us to have a better understanding of the system. Because of this, in order for us to collect information on the topic of the research, we will initially need to measure it in order to quantify the characteristics that are associated with it. For this, we will need to perform certain measurements on the subject. After that, we will establish the indicators that will be applied for the purpose of determining the value of each measure, and we will do so by utilizing the results of the stage that came before it. Within the context of this method, the Measurement and Evaluation (M&E) process can gain an advantage from making use of a conceptual framework that is built on top of an underlying ontology. The M&E framework makes it possible to describe the basic ideas, which prepares the way for a measurement process to be carried out in a manner that is consistent and repeatable. This is made possible by the fact that the framework makes it possible to specify the essential concepts. The ability of a measuring process to be automated is of the utmost significance, even if it is required for a measuring process to give findings that are consistent, comparable, and traceable. The ability of a measuring process to be automated is of the utmost relevance. Because the activities that take place in today's economy take place in real time, we need to pay considerable attention to the use of online monitoring in order to notice and avoid a variety of different scenarios while they are happening. Because of this, we will be able to reduce risk while maximizing our efficiency. In this regard, the functionality of the measurement and evaluation frameworks is an extremely valuable asset, as they make it possible to organize and automate the process of measuring in a manner that is consistent. This makes the frameworks an exceptionally helpful asset. As a result of this, the frameworks are a very useful asset. As soon as it is feasible to guarantee that the measurements are comparable, consistent, and traceable, the method of decision-making will naturally be based on their history, which will consist of the measurements collected throughout the years. This will be the case as soon as it is possible to guarantee that the measurements are comparable, consistent, and traceable. This will take place as soon as it is practical to assure that the measurements are comparable, consistent, and traceable. In this regard, the organizational memory is of special importance due to the fact that it makes it possible to store prior organizational experience and knowledge in order to get ready for future proposals (that is, as the foundation for a range of different assumptions and premises, among other things). In this regard, the organizational memory is of particular use. Because of this, the organizational memory is a component that is of very high importance. Measurements and the experiences that are associated with them provide continuous nourishment for the organizational memory, and the organizational memory provides the foundation for the feedback that is utilized in the process of decision making.



Mastering Machine Learning Practical Applications Across Industries


Mastering Machine Learning Practical Applications Across Industries
DOWNLOAD
Author : Vijay Gupta
language : en
Publisher: eInitial Publication
Release Date : 2024-05-08

Mastering Machine Learning Practical Applications Across Industries written by Vijay Gupta and has been published by eInitial Publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-08 with Computers categories.


"Mastering Machine Learning: Practical Applications Across Industries" offers a comprehensive exploration of the transformative potential of machine learning (ML) across diverse sectors. From healthcare to finance, manufacturing to entertainment, this ebook delves into the practical applications and real-world case studies that showcase the power of ML in driving innovation and efficiency. Through a blend of theoretical insights and hands-on guidance, readers will embark on a journey through the fundamentals of ML techniques, understanding key concepts, algorithms, and methodologies. The ebook illuminates the path from theory to practice, providing actionable strategies for implementing ML solutions in various organizational contexts. Each chapter is carefully crafted to highlight the unique challenges and opportunities present in different industries, offering in-depth analyses of successful ML implementations and the lessons learned along the way. From predicting patient outcomes in healthcare to optimizing financial portfolios in banking, readers will discover how ML is revolutionizing decision-making processes and reshaping business landscapes. Moreover, "Mastering Machine Learning" doesn't shy away from addressing the ethical considerations inherent in ML applications. Discussions on bias, fairness, privacy, and transparency provide readers with a nuanced understanding of the social and ethical implications of ML adoption, empowering them to navigate these complex issues responsibly. Whether you're a seasoned data scientist looking to expand your expertise or a business leader seeking to leverage ML for strategic advantage, this ebook serves as an indispensable guide. Packed with insights, case studies, and practical tips, "Mastering Machine Learning" equips readers with the knowledge and tools needed to harness the full potential of ML across industries and drive meaningful impact in an increasingly data-driven world.



Practical Machine Learning For Data Analysis Using Python


Practical Machine Learning For Data Analysis Using Python
DOWNLOAD
Author : Abdulhamit Subasi
language : en
Publisher: Academic Press
Release Date : 2020-06-05

Practical Machine Learning For Data Analysis Using Python written by Abdulhamit Subasi and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-05 with Computers categories.


Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. - Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas - Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data - Explores important classification and regression algorithms as well as other machine learning techniques - Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features



Practical Machine Learning


Practical Machine Learning
DOWNLOAD
Author : Ally S. Nyamawe
language : en
Publisher: CRC Press
Release Date : 2025-02-13

Practical Machine Learning written by Ally S. Nyamawe and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-13 with Computers categories.


The book provides an accessible, comprehensive introduction for beginners to machine learning, equipping them with the fundamental skills and techniques essential for this field. It enables beginners to construct practical, real-world solutions powered by machine learning across diverse application domains. It demonstrates the fundamental techniques involved in data collection, integration, cleansing, transformation, development, and deployment of machine learning models. This book emphasizes the importance of integrating responsible and explainable AI into machine learning models, ensuring these principles are prioritized rather than treated as an afterthought. To support learning, this book also offers information on accessing additional machine learning resources such as datasets, libraries, pre-trained models, and tools for tracking machine learning models. This is a core resource for students and instructors of machine learning and data science looking for a beginner-friendly material which offers real-world applications and takes ethical discussions into account. The Open Access version of this book, available at http://www.taylorfrancis.com, has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives (CC-BY-NC-ND) 4.0 license.



Cloud Based Machine Learning Practical Guide To Deploying Ai Models In The Cloud


Cloud Based Machine Learning Practical Guide To Deploying Ai Models In The Cloud
DOWNLOAD
Author : Hemanth Volikatla
language : en
Publisher: RK Publication
Release Date : 2024-05-15

Cloud Based Machine Learning Practical Guide To Deploying Ai Models In The Cloud written by Hemanth Volikatla and has been published by RK Publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-15 with Computers categories.


Cloud-Based Machine Learning – Practical Guide to Deploying AI Models in the Cloud is a comprehensive resource designed to help professionals and enthusiasts harness the power of cloud platforms for AI deployment. It's key concepts, tools, and techniques for building, training, and deploying machine learning models using services like AWS, Azure, and Google Cloud. With practical examples, step-by-step instructions, and best practices, this guide empowers readers to scale AI solutions efficiently, ensuring robust performance and seamless integration into real-world applications. Perfect for beginners and experts aiming to advance their skills in cloud-based AI technologies.



Applying Reinforcement Learning On Real World Data With Practical Examples In Python


Applying Reinforcement Learning On Real World Data With Practical Examples In Python
DOWNLOAD
Author : Philip Osborne
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2022-05-20

Applying Reinforcement Learning On Real World Data With Practical Examples In Python written by Philip Osborne and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-20 with Computers categories.


Reinforcement learning is a powerful tool in artificial intelligence in which virtual or physical agents learn to optimize their decision making to achieve long-term goals. In some cases, this machine learning approach can save programmers time, outperform existing controllers, reach super-human performance, and continually adapt to changing conditions. It has shown human level performance on a number of tasks (REF) and the methodology for automation in robotics and self-driving cars (REF). This book argues that these successes show reinforcement learning can be adopted successfully in many different situations, including robot control, stock trading, supply chain optimization, and plant control. However, reinforcement learning has traditionally been limited to applications in virtual environments or simulations in which the setup is already provided. Furthermore, experimentation may be completed for an almost limitless number of attempts risk-free. In many real-life tasks, applying reinforcement learning is not as simple as (1) data is not in the correct form for reinforcement learning; (2) data is scarce, and (3) automation has limitations in the real-world. Therefore, this book is written to help academics, domain specialists, and data enthusiast alike to understand the basic principles of applying reinforcement learning to real-world problems. This is achieved by focusing on the process of taking practical examples and modeling standard data into the correct form required to then apply basic agents. To further assist readers gain a deep and grounded understanding of the approaches, the book shows hand-calculated examples in full and then how this can be achieved in a more automated manner with code. For decision makers who are interested in reinforcement learning as a solution but are not proficient, the book includes simple, non-technical examples in the introduction and case studies section. These provide context of what reinforcement learning offer but also the challenges and risks associated with applying it in practice. Specifically, these sections illustrate the differences between reinforcement learning and other machine learning approaches as well as how well-known companies have found success using the approach to their problems.



Basic Guide For Machine Learning Algorithms And Models


Basic Guide For Machine Learning Algorithms And Models
DOWNLOAD
Author : Ms.G.Vanitha
language : en
Publisher: SK Research Group of Companies
Release Date : 2024-07-10

Basic Guide For Machine Learning Algorithms And Models written by Ms.G.Vanitha and has been published by SK Research Group of Companies this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-10 with Computers categories.


Ms.G.Vanitha, Associate Professor, Department of Information Technology, Bishop Heber College, Tiruchirappalli, Tamil Nadu, India. Dr.M.Kasthuri, Associate Professor, Department of Computer Science, Bishop Heber College, Tiruchirappalli, Tamil Nadu, India.