[PDF] Machine Learning From Weak Supervision - eBooks Review

Machine Learning From Weak Supervision


Machine Learning From Weak Supervision
DOWNLOAD

Download Machine Learning From Weak Supervision PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning From Weak Supervision book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Machine Learning From Weak Supervision


Machine Learning From Weak Supervision
DOWNLOAD
Author : Masashi Sugiyama
language : en
Publisher: MIT Press
Release Date : 2022-08-23

Machine Learning From Weak Supervision written by Masashi Sugiyama and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-23 with Mathematics categories.


Fundamental theory and practical algorithms of weakly supervised classification, emphasizing an approach based on empirical risk minimization. Standard machine learning techniques require large amounts of labeled data to work well. When we apply machine learning to problems in the physical world, however, it is extremely difficult to collect such quantities of labeled data. In this book Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, Tomoya Sakai and Gang Niu present theory and algorithms for weakly supervised learning, a paradigm of machine learning from weakly labeled data. Emphasizing an approach based on empirical risk minimization and drawing on state-of-the-art research in weakly supervised learning, the book provides both the fundamentals of the field and the advanced mathematical theories underlying them. It can be used as a reference for practitioners and researchers and in the classroom. The book first mathematically formulates classification problems, defines common notations, and reviews various algorithms for supervised binary and multiclass classification. It then explores problems of binary weakly supervised classification, including positive-unlabeled (PU) classification, positive-negative-unlabeled (PNU) classification, and unlabeled-unlabeled (UU) classification. It then turns to multiclass classification, discussing complementary-label (CL) classification and partial-label (PL) classification. Finally, the book addresses more advanced issues, including a family of correction methods to improve the generalization performance of weakly supervised learning and the problem of class-prior estimation.



Practical Weak Supervision


Practical Weak Supervision
DOWNLOAD
Author : Wee Hyong Tok
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-09-30

Practical Weak Supervision written by Wee Hyong Tok and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-30 with Computers categories.


Most data scientists and engineers today rely on quality labeled data to train machine learning models. But building a training set manually is time-consuming and expensive, leaving many companies with unfinished ML projects. There's a more practical approach. In this book, Wee Hyong Tok, Amit Bahree, and Senja Filipi show you how to create products using weakly supervised learning models. You'll learn how to build natural language processing and computer vision projects using weakly labeled datasets from Snorkel, a spin-off from the Stanford AI Lab. Because so many companies have pursued ML projects that never go beyond their labs, this book also provides a guide on how to ship the deep learning models you build. Get up to speed on the field of weak supervision, including ways to use it as part of the data science process Use Snorkel AI for weak supervision and data programming Get code examples for using Snorkel to label text and image datasets Use a weakly labeled dataset for text and image classification Learn practical considerations for using Snorkel with large datasets and using Spark clusters to scale labeling



Practical Weak Supervision


Practical Weak Supervision
DOWNLOAD
Author : Wee Hyong Tok
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-09-30

Practical Weak Supervision written by Wee Hyong Tok and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-30 with Computers categories.


Most data scientists and engineers today rely on quality labeled data to train machine learning models. But building a training set manually is time-consuming and expensive, leaving many companies with unfinished ML projects. There's a more practical approach. In this book, Wee Hyong Tok, Amit Bahree, and Senja Filipi show you how to create products using weakly supervised learning models. You'll learn how to build natural language processing and computer vision projects using weakly labeled datasets from Snorkel, a spin-off from the Stanford AI Lab. Because so many companies have pursued ML projects that never go beyond their labs, this book also provides a guide on how to ship the deep learning models you build. Get up to speed on the field of weak supervision, including ways to use it as part of the data science process Use Snorkel AI for weak supervision and data programming Get code examples for using Snorkel to label text and image datasets Use a weakly labeled dataset for text and image classification Learn practical considerations for using Snorkel with large datasets and using Spark clusters to scale labeling



Practical Weak Supervision


Practical Weak Supervision
DOWNLOAD
Author : Wee Tok
language : en
Publisher:
Release Date : 2021

Practical Weak Supervision written by Wee Tok and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.


Most data scientists and engineers today rely on quality labeled data to train their machine learning models. But building training sets manually is time-consuming and expensive, leaving many companies with unfinished ML projects. There's a more practical approach. In this book, Amit Bahree, Senja Filipi, and Wee Hyong Tok from Microsoft show you how to create products using weakly supervised learning models. You'll learn how to build natural language processing and computer vision projects using weakly labeled datasets from Snorkel, a spin-off from the Stanford AI Lab. Because so many companies pursue ML projects that never go beyond their labs, this book also provides a guide on how to ship the deep learning models you build. Get a practical overview of weak supervision Dive into data programming with help from Snorkel Perform text classification using Snorkel's weakly labeled dataset Use Snorkel's labeled indoor-outdoor dataset for computer vision tasks Scale up weak supervision using scaling strategies and underlying technologies.



Advances In Computer Vision


Advances In Computer Vision
DOWNLOAD
Author : Kohei Arai
language : en
Publisher: Springer
Release Date : 2019-04-23

Advances In Computer Vision written by Kohei Arai and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-23 with Computers categories.


This book presents a remarkable collection of chapters covering a wide range of topics in the areas of Computer Vision, both from theoretical and application perspectives. It gathers the proceedings of the Computer Vision Conference (CVC 2019), held in Las Vegas, USA from May 2 to 3, 2019. The conference attracted a total of 371 submissions from pioneering researchers, scientists, industrial engineers, and students all around the world. These submissions underwent a double-blind peer review process, after which 120 (including 7 poster papers) were selected for inclusion in these proceedings. The book’s goal is to reflect the intellectual breadth and depth of current research on computer vision, from classical to intelligent scope. Accordingly, its respective chapters address state-of-the-art intelligent methods and techniques for solving real-world problems, while also outlining future research directions. Topic areas covered include Machine Vision and Learning, Data Science,Image Processing, Deep Learning, and Computer Vision Applications.



Fundamentals And Methods Of Machine And Deep Learning


Fundamentals And Methods Of Machine And Deep Learning
DOWNLOAD
Author : Pradeep Singh
language : en
Publisher: John Wiley & Sons
Release Date : 2022-03-02

Fundamentals And Methods Of Machine And Deep Learning written by Pradeep Singh and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-02 with Computers categories.


FUNDAMENTALS AND METHODS OF MACHINE AND DEEP LEARNING The book provides a practical approach by explaining the concepts of machine learning and deep learning algorithms, evaluation of methodology advances, and algorithm demonstrations with applications. Over the past two decades, the field of machine learning and its subfield deep learning have played a main role in software applications development. Also, in recent research studies, they are regarded as one of the disruptive technologies that will transform our future life, business, and the global economy. The recent explosion of digital data in a wide variety of domains, including science, engineering, Internet of Things, biomedical, healthcare, and many business sectors, has declared the era of big data, which cannot be analysed by classical statistics but by the more modern, robust machine learning and deep learning techniques. Since machine learning learns from data rather than by programming hard-coded decision rules, an attempt is being made to use machine learning to make computers that are able to solve problems like human experts in the field. The goal of this book is to present a??practical approach by explaining the concepts of machine learning and deep learning algorithms with applications. Supervised machine learning algorithms, ensemble machine learning algorithms, feature selection, deep learning techniques, and their applications are discussed. Also included in the eighteen chapters is unique information which provides a clear understanding of concepts by using algorithms and case studies illustrated with applications of machine learning and deep learning in different domains, including disease prediction, software defect prediction, online television analysis, medical image processing, etc. Each of the chapters briefly described below provides both a chosen approach and its implementation. Audience Researchers and engineers in artificial intelligence, computer scientists as well as software developers.



Data Centric Machine Learning With Python


Data Centric Machine Learning With Python
DOWNLOAD
Author : Jonas Christensen
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-02-29

Data Centric Machine Learning With Python written by Jonas Christensen and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-02-29 with Computers categories.


Join the data-centric revolution and master the concepts, techniques, and algorithms shaping the future of AI and ML development, using Python Key Features Grasp the principles of data centricity and apply them to real-world scenarios Gain experience with quality data collection, labeling, and synthetic data creation using Python Develop essential skills for building reliable, responsible, and ethical machine learning solutions Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionIn the rapidly advancing data-driven world where data quality is pivotal to the success of machine learning and artificial intelligence projects, this critically timed guide provides a rare, end-to-end overview of data-centric machine learning (DCML), along with hands-on applications of technical and non-technical approaches to generating deeper and more accurate datasets. This book will help you understand what data-centric ML/AI is and how it can help you to realize the potential of ‘small data’. Delving into the building blocks of data-centric ML/AI, you’ll explore the human aspects of data labeling, tackle ambiguity in labeling, and understand the role of synthetic data. From strategies to improve data collection to techniques for refining and augmenting datasets, you’ll learn everything you need to elevate your data-centric practices. Through applied examples and insights for overcoming challenges, you’ll get a roadmap for implementing data-centric ML/AI in diverse applications in Python. By the end of this book, you’ll have developed a profound understanding of data-centric ML/AI and the proficiency to seamlessly integrate common data-centric approaches in the model development lifecycle to unlock the full potential of your machine learning projects by prioritizing data quality and reliability.What you will learn Understand the impact of input data quality compared to model selection and tuning Recognize the crucial role of subject-matter experts in effective model development Implement data cleaning, labeling, and augmentation best practices Explore common synthetic data generation techniques and their applications Apply synthetic data generation techniques using common Python packages Detect and mitigate bias in a dataset using best-practice techniques Understand the importance of reliability, responsibility, and ethical considerations in ML/AI Who this book is for This book is for data science professionals and machine learning enthusiasts looking to understand the concept of data-centricity, its benefits over a model-centric approach, and the practical application of a best-practice data-centric approach in their work. This book is also for other data professionals and senior leaders who want to explore the tools and techniques to improve data quality and create opportunities for small data ML/AI in their organizations.



Semi Supervised Learning


Semi Supervised Learning
DOWNLOAD
Author : Olivier Chapelle
language : en
Publisher: MIT Press
Release Date : 2010-01-22

Semi Supervised Learning written by Olivier Chapelle and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-01-22 with Computers categories.


A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems: state-of-the-art algorithms, a taxonomy of the field, applications, benchmark experiments, and directions for future research. In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research.Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.



Introduction To Semi Supervised Learning


Introduction To Semi Supervised Learning
DOWNLOAD
Author : Xiaojin Zhu
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Introduction To Semi Supervised Learning written by Xiaojin Zhu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines / Human Semi-Supervised Learning / Theory and Outlook



Machine Learning And Knowledge Discovery In Databases Applied Data Science And Demo Track


Machine Learning And Knowledge Discovery In Databases Applied Data Science And Demo Track
DOWNLOAD
Author : Gianmarco De Francisci Morales
language : en
Publisher: Springer Nature
Release Date : 2023-09-16

Machine Learning And Knowledge Discovery In Databases Applied Data Science And Demo Track written by Gianmarco De Francisci Morales and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-16 with Computers categories.


The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023. The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows: Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering. Part II: ​Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning. Part III: ​Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning. Part IV: ​Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning. Part V: ​Robustness; Time Series; Transfer and Multitask Learning. Part VI: ​Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval. ​Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.