Machine Learning In Cyber Trust

DOWNLOAD
Download Machine Learning In Cyber Trust PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning In Cyber Trust book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Machine Learning In Cyber Trust
DOWNLOAD
Author : Jeffrey J. P. Tsai
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-04-05
Machine Learning In Cyber Trust written by Jeffrey J. P. Tsai and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-05 with Computers categories.
Many networked computer systems are far too vulnerable to cyber attacks that can inhibit their functioning, corrupt important data, or expose private information. Not surprisingly, the field of cyber-based systems is a fertile ground where many tasks can be formulated as learning problems and approached in terms of machine learning algorithms. This book contains original materials by leading researchers in the area and covers applications of different machine learning methods in the reliability, security, performance, and privacy issues of cyber space. It enables readers to discover what types of learning methods are at their disposal, summarizing the state-of-the-practice in this significant area, and giving a classification of existing work. Those working in the field of cyber-based systems, including industrial managers, researchers, engineers, and graduate and senior undergraduate students will find this an indispensable guide in creating systems resistant to and tolerant of cyber attacks.
Hands On Machine Learning For Cybersecurity
DOWNLOAD
Author : Soma Halder
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-12-31
Hands On Machine Learning For Cybersecurity written by Soma Halder and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-31 with Computers categories.
Get into the world of smart data security using machine learning algorithms and Python libraries Key FeaturesLearn machine learning algorithms and cybersecurity fundamentalsAutomate your daily workflow by applying use cases to many facets of securityImplement smart machine learning solutions to detect various cybersecurity problemsBook Description Cyber threats today are one of the costliest losses that an organization can face. In this book, we use the most efficient tool to solve the big problems that exist in the cybersecurity domain. The book begins by giving you the basics of ML in cybersecurity using Python and its libraries. You will explore various ML domains (such as time series analysis and ensemble modeling) to get your foundations right. You will implement various examples such as building system to identify malicious URLs, and building a program to detect fraudulent emails and spam. Later, you will learn how to make effective use of K-means algorithm to develop a solution to detect and alert you to any malicious activity in the network. Also learn how to implement biometrics and fingerprint to validate whether the user is a legitimate user or not. Finally, you will see how we change the game with TensorFlow and learn how deep learning is effective for creating models and training systems What you will learnUse machine learning algorithms with complex datasets to implement cybersecurity conceptsImplement machine learning algorithms such as clustering, k-means, and Naive Bayes to solve real-world problemsLearn to speed up a system using Python libraries with NumPy, Scikit-learn, and CUDAUnderstand how to combat malware, detect spam, and fight financial fraud to mitigate cyber crimesUse TensorFlow in the cybersecurity domain and implement real-world examplesLearn how machine learning and Python can be used in complex cyber issuesWho this book is for This book is for the data scientists, machine learning developers, security researchers, and anyone keen to apply machine learning to up-skill computer security. Having some working knowledge of Python and being familiar with the basics of machine learning and cybersecurity fundamentals will help to get the most out of the book
Artificial Intelligence For Cyber Security Methods Issues And Possible Horizons Or Opportunities
DOWNLOAD
Author : Sanjay Misra
language : en
Publisher: Springer Nature
Release Date : 2021-05-31
Artificial Intelligence For Cyber Security Methods Issues And Possible Horizons Or Opportunities written by Sanjay Misra and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-31 with Technology & Engineering categories.
This book provides stepwise discussion, exhaustive literature review, detailed analysis and discussion, rigorous experimentation results (using several analytics tools), and an application-oriented approach that can be demonstrated with respect to data analytics using artificial intelligence to make systems stronger (i.e., impossible to breach). We can see many serious cyber breaches on Government databases or public profiles at online social networking in the recent decade. Today artificial intelligence or machine learning is redefining every aspect of cyber security. From improving organizations’ ability to anticipate and thwart breaches, protecting the proliferating number of threat surfaces with Zero Trust Security frameworks to making passwords obsolete, AI and machine learning are essential to securing the perimeters of any business. The book is useful for researchers, academics, industry players, data engineers, data scientists, governmental organizations, and non-governmental organizations.
Game Theory And Machine Learning For Cyber Security
DOWNLOAD
Author : Charles A. Kamhoua
language : en
Publisher: John Wiley & Sons
Release Date : 2021-09-15
Game Theory And Machine Learning For Cyber Security written by Charles A. Kamhoua and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-15 with Technology & Engineering categories.
GAME THEORY AND MACHINE LEARNING FOR CYBER SECURITY Move beyond the foundations of machine learning and game theory in cyber security to the latest research in this cutting-edge field In Game Theory and Machine Learning for Cyber Security, a team of expert security researchers delivers a collection of central research contributions from both machine learning and game theory applicable to cybersecurity. The distinguished editors have included resources that address open research questions in game theory and machine learning applied to cyber security systems and examine the strengths and limitations of current game theoretic models for cyber security. Readers will explore the vulnerabilities of traditional machine learning algorithms and how they can be mitigated in an adversarial machine learning approach. The book offers a comprehensive suite of solutions to a broad range of technical issues in applying game theory and machine learning to solve cyber security challenges. Beginning with an introduction to foundational concepts in game theory, machine learning, cyber security, and cyber deception, the editors provide readers with resources that discuss the latest in hypergames, behavioral game theory, adversarial machine learning, generative adversarial networks, and multi-agent reinforcement learning. Readers will also enjoy: A thorough introduction to game theory for cyber deception, including scalable algorithms for identifying stealthy attackers in a game theoretic framework, honeypot allocation over attack graphs, and behavioral games for cyber deception An exploration of game theory for cyber security, including actionable game-theoretic adversarial intervention detection against advanced persistent threats Practical discussions of adversarial machine learning for cyber security, including adversarial machine learning in 5G security and machine learning-driven fault injection in cyber-physical systems In-depth examinations of generative models for cyber security Perfect for researchers, students, and experts in the fields of computer science and engineering, Game Theory and Machine Learning for Cyber Security is also an indispensable resource for industry professionals, military personnel, researchers, faculty, and students with an interest in cyber security.
Machine Learning And Security
DOWNLOAD
Author : Clarence Chio
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-01-26
Machine Learning And Security written by Clarence Chio and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-26 with Computers categories.
Can machine learning techniques solve our computer security problems and finally put an end to the cat-and-mouse game between attackers and defenders? Or is this hope merely hype? Now you can dive into the science and answer this question for yourself. With this practical guide, you’ll explore ways to apply machine learning to security issues such as intrusion detection, malware classification, and network analysis. Machine learning and security specialists Clarence Chio and David Freeman provide a framework for discussing the marriage of these two fields, as well as a toolkit of machine-learning algorithms that you can apply to an array of security problems. This book is ideal for security engineers and data scientists alike. Learn how machine learning has contributed to the success of modern spam filters Quickly detect anomalies, including breaches, fraud, and impending system failure Conduct malware analysis by extracting useful information from computer binaries Uncover attackers within the network by finding patterns inside datasets Examine how attackers exploit consumer-facing websites and app functionality Translate your machine learning algorithms from the lab to production Understand the threat attackers pose to machine learning solutions
Machine Learning Approaches In Cyber Security Analytics
DOWNLOAD
Author : Tony Thomas
language : en
Publisher: Springer Nature
Release Date : 2019-12-16
Machine Learning Approaches In Cyber Security Analytics written by Tony Thomas and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-16 with Computers categories.
This book introduces various machine learning methods for cyber security analytics. With an overwhelming amount of data being generated and transferred over various networks, monitoring everything that is exchanged and identifying potential cyber threats and attacks poses a serious challenge for cyber experts. Further, as cyber attacks become more frequent and sophisticated, there is a requirement for machines to predict, detect, and identify them more rapidly. Machine learning offers various tools and techniques to automate and quickly predict, detect, and identify cyber attacks.
Confluence Of Ai Machine And Deep Learning In Cyber Forensics
DOWNLOAD
Author : Misra, Sanjay
language : en
Publisher: IGI Global
Release Date : 2020-12-18
Confluence Of Ai Machine And Deep Learning In Cyber Forensics written by Misra, Sanjay and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-18 with Law categories.
Developing a knowledge model helps to formalize the difficult task of analyzing crime incidents in addition to preserving and presenting the digital evidence for legal processing. The use of data analytics techniques to collect evidence assists forensic investigators in following the standard set of forensic procedures, techniques, and methods used for evidence collection and extraction. Varieties of data sources and information can be uniquely identified, physically isolated from the crime scene, protected, stored, and transmitted for investigation using AI techniques. With such large volumes of forensic data being processed, different deep learning techniques may be employed. Confluence of AI, Machine, and Deep Learning in Cyber Forensics contains cutting-edge research on the latest AI techniques being used to design and build solutions that address prevailing issues in cyber forensics and that will support efficient and effective investigations. This book seeks to understand the value of the deep learning algorithm to handle evidence data as well as the usage of neural networks to analyze investigation data. Other themes that are explored include machine learning algorithms that allow machines to interact with the evidence, deep learning algorithms that can handle evidence acquisition and preservation, and techniques in both fields that allow for the analysis of huge amounts of data collected during a forensic investigation. This book is ideally intended for forensics experts, forensic investigators, cyber forensic practitioners, researchers, academicians, and students interested in cyber forensics, computer science and engineering, information technology, and electronics and communication.
Proceedings Of International Joint Conference On Advances In Computational Intelligence
DOWNLOAD
Author : Mohammad Shorif Uddin
language : en
Publisher: Springer Nature
Release Date : 2022-05-18
Proceedings Of International Joint Conference On Advances In Computational Intelligence written by Mohammad Shorif Uddin and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-18 with Technology & Engineering categories.
This book gathers outstanding research papers presented at the 5th International Joint Conference on Advances in Computational Intelligence (IJCACI 2021), held online during October 23–24, 2021. IJCACI 2021 is jointly organized by Jahangirnagar University (JU), Bangladesh, and South Asian University (SAU), India. The book presents the novel contributions in areas of computational intelligence and it serves as a reference material for advance research. The topics covered are collective intelligence, soft computing, optimization, cloud computing, machine learning, intelligent software, robotics, data science, data security, big data analytics, and signal and natural language processing.
Blockchain Cybersecurity Trust And Privacy
DOWNLOAD
Author : Kim-Kwang Raymond Choo
language : en
Publisher: Springer Nature
Release Date : 2020-03-02
Blockchain Cybersecurity Trust And Privacy written by Kim-Kwang Raymond Choo and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-02 with Computers categories.
This book provides the reader with the most up-to-date knowledge of blockchain in mainstream areas of security, trust, and privacy in the decentralized domain, which is timely and essential (this is due to the fact that the distributed and P2P applications is increasing day-by-day, and the attackers adopt new mechanisms to threaten the security and privacy of the users in those environments). This book also provides the technical information regarding blockchain-oriented software, applications, and tools required for the researcher and developer experts in both computing and software engineering to provide solutions and automated systems against current security, trust and privacy issues in the cyberspace. Cybersecurity, trust and privacy (CTP) are pressing needs for governments, businesses, and individuals, receiving the utmost priority for enforcement and improvement in almost any societies around the globe. Rapid advances, on the other hand, are being made in emerging blockchain technology with broadly diverse applications that promise to better meet business and individual needs. Blockchain as a promising infrastructural technology seems to have the potential to be leveraged in different aspects of cybersecurity promoting decentralized cyberinfrastructure. Blockchain characteristics such as decentralization, verifiability and immutability may revolve current cybersecurity mechanisms for ensuring the authenticity, reliability, and integrity of data. Almost any article on the blockchain points out that the cybersecurity (and its derivatives) could be revitalized if it is supported by blockchain technology. Yet, little is known about factors related to decisions to adopt this technology, and how it can systemically be put into use to remedy current CTP’s issues in the digital world. Topics of interest for this book include but not limited to: Blockchain-based authentication, authorization and accounting mechanisms Applications of blockchain technologies in digital forensic and threat hunting Blockchain-based threat intelligence and threat analytics techniques Formal specification of smart contracts Automated tools for outsmarting smart contracts Security and privacy aspects of blockchain technologies Vulnerabilities of smart contracts Blockchain for securing cyber infrastructure and internet of things networks Blockchain-based cybersecurity education systems This book provides information for security and privacy experts in all the areas of blockchain, cryptocurrency, cybersecurity, forensics, smart contracts, computer systems, computer networks, software engineering, applied artificial intelligence for computer security experts, big data analysts, and decentralized systems. Researchers, scientists and advanced level students working in computer systems, computer networks, artificial intelligence, big data will find this book useful as well.
Next Generation Ai Language Models In Research
DOWNLOAD
Author : Kashif Naseer Qureshi
language : en
Publisher: CRC Press
Release Date : 2024-11-13
Next Generation Ai Language Models In Research written by Kashif Naseer Qureshi and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-13 with Computers categories.
In this comprehensive and cutting-edge volume, Qureshi and Jeon bring together experts from around the world to explore the potential of artificial intelligence models in research and discuss the potential benefits and the concerns and challenges that the rapid development of this field has raised. The international chapter contributor group provides a wealth of technical information on different aspects of AI, including key aspects of AI, deep learning and machine learning models for AI, natural language processing and computer vision, reinforcement learning, ethics and responsibilities, security, practical implementation, and future directions. The contents are balanced in terms of theory, methodologies, and technical aspects, and contributors provide case studies to clearly illustrate the concepts and technical discussions throughout. Readers will gain valuable insights into how AI can revolutionize their work in fields including data analytics and pattern identification, healthcare research, social science research, and more, and improve their technical skills, problem-solving abilities, and evidence-based decision-making. Additionally, they will be cognizant of the limitations and challenges, the ethical implications, and security concerns related to language models, which will enable them to make more informed choices regarding their implementation. This book is an invaluable resource for undergraduate and graduate students who want to understand AI models, recent trends in the area, and technical and ethical aspects of AI. Companies involved in AI development or implementing AI in various fields will also benefit from the book’s discussions on both the technical and ethical aspects of this rapidly growing field.