[PDF] Machine Learning In Healthcare - eBooks Review

Machine Learning In Healthcare


Machine Learning In Healthcare
DOWNLOAD

Download Machine Learning In Healthcare PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning In Healthcare book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Machine Learning In Healthcare


Machine Learning In Healthcare
DOWNLOAD
Author : Bikesh Kumar Singh
language : en
Publisher: CRC Press
Release Date : 2022-02-17

Machine Learning In Healthcare written by Bikesh Kumar Singh and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-17 with Computers categories.


Artificial intelligence (AI) and machine learning (ML) techniques play an important role in our daily lives by enhancing predictions and decision-making for the public in several fields such as financial services, real estate business, consumer goods, social media, etc. Despite several studies that have proved the efficacy of AI/ML tools in providing improved healthcare solutions, it has not gained the trust of health-care practitioners and medical scientists. This is due to poor reporting of the technology, variability in medical data, small datasets, and lack of standard guidelines for application of AI. Therefore, the development of new AI/ML tools for various domains of medicine is an ongoing field of research. Machine Learning in Healthcare: Fundamentals and Recent Applications discusses how to build various ML algorithms and how they can be applied to improve healthcare systems. Healthcare applications of AI are innumerable: medical data analysis, early detection and diagnosis of disease, providing objective-based evidence to reduce human errors, curtailing inter- and intra-observer errors, risk identification and interventions for healthcare management, real-time health monitoring, assisting clinicians and patients for selecting appropriate medications, and evaluating drug responses. Extensive demonstrations and discussion on the various principles of machine learning and its application in healthcare is provided, along with solved examples and exercises. This text is ideal for readers interested in machine learning without any background knowledge and looking to implement machine-learning models for healthcare systems.



Machine Learning And Ai For Healthcare


Machine Learning And Ai For Healthcare
DOWNLOAD
Author : Arjun Panesar
language : en
Publisher:
Release Date : 2021

Machine Learning And Ai For Healthcare written by Arjun Panesar and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.


This updated second edition offers a guided tour of machine learning algorithms and architecture design. It provides real-world applications of intelligent systems in healthcare and covers the challenges of managing big data. The book has been updated with the latest research in massive data, machine learning, and AI ethics. It covers new topics in managing the complexities of massive data, and provides examples of complex machine learning models. Updated case studies from global healthcare providers showcase the use of big data and AI in the fight against chronic and novel diseases, including COVID-19. The ethical implications of digital healthcare, analytics, and the future of AI in population health management are explored. You will learn how to create a machine learning model, evaluate its performance, and operationalize its outcomes within your organization. Case studies from leading healthcare providers cover scaling global digital services. Techniques are presented to evaluate the efficacy, suitability, and efficiency of AI machine learning applications through case studies and best practice, including the Internet of Things. You will understand how machine learning can be used to develop health intelligence-with the aim of improving patient health, population health, and facilitating significant care-payer cost savings. You will: Understand key machine learning algorithms and their use and implementation within healthcare Implement machine learning systems, such as speech recognition and enhanced deep learning/AI Manage the complexities of massive data Be familiar with AI and healthcare best practices, feedback loops, and intelligent agents.



Machine Learning And The Internet Of Medical Things In Healthcare


Machine Learning And The Internet Of Medical Things In Healthcare
DOWNLOAD
Author : Krishna Kant Singh
language : en
Publisher: Academic Press
Release Date : 2021-04-14

Machine Learning And The Internet Of Medical Things In Healthcare written by Krishna Kant Singh and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-14 with Science categories.


Machine Learning and the Internet of Medical Things in Healthcare discusses the applications and challenges of machine learning for healthcare applications. The book provides a platform for presenting machine learning-enabled healthcare techniques and offers a mathematical and conceptual background of the latest technology. It describes machine learning techniques along with the emerging platform of the Internet of Medical Things used by practitioners and researchers worldwide. The book includes deep feed forward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology. It also presents the concepts of the Internet of Things, the set of technologies that develops traditional devices into smart devices. Finally, the book offers research perspectives, covering the convergence of machine learning and IoT. It also presents the application of these technologies in the development of healthcare frameworks. - Provides an introduction to the Internet of Medical Things through the principles and applications of machine learning - Explains the functions and applications of machine learning in various applications such as ultrasound imaging, biomedical signal processing, robotics, and biomechatronics - Includes coverage of the evolution of healthcare applications with machine learning, including Clinical Decision Support Systems, artificial intelligence in biomedical engineering, and AI-enabled connected health informatics, supported by real-world case studies



Machine Learning For Healthcare


Machine Learning For Healthcare
DOWNLOAD
Author : Rashmi Agrawal
language : en
Publisher: CRC Press
Release Date : 2020-12-08

Machine Learning For Healthcare written by Rashmi Agrawal and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-08 with Health & Fitness categories.


Machine Learning for Healthcare: Handling and Managing Data provides in-depth information about handling and managing healthcare data through machine learning methods. This book expresses the long-standing challenges in healthcare informatics and provides rational explanations of how to deal with them. Machine Learning for Healthcare: Handling and Managing Data provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of machine learning applications. These are illustrated in a case study which examines how chronic disease is being redefined through patient-led data learning and the Internet of Things. This text offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare. Readers will discover the ethical implications of machine learning in healthcare and the future of machine learning in population and patient health optimization. This book can also help assist in the creation of a machine learning model, performance evaluation, and the operationalization of its outcomes within organizations. It may appeal to computer science/information technology professionals and researchers working in the area of machine learning, and is especially applicable to the healthcare sector. The features of this book include: A unique and complete focus on applications of machine learning in the healthcare sector. An examination of how data analysis can be done using healthcare data and bioinformatics. An investigation of how healthcare companies can leverage the tapestry of big data to discover new business values. An exploration of the concepts of machine learning, along with recent research developments in healthcare sectors.



Artificial Intelligence And Machine Learning In Healthcare


Artificial Intelligence And Machine Learning In Healthcare
DOWNLOAD
Author : Ankur Saxena
language : en
Publisher: Springer Nature
Release Date : 2021-05-06

Artificial Intelligence And Machine Learning In Healthcare written by Ankur Saxena and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-06 with Science categories.


This book reviews the application of artificial intelligence and machine learning in healthcare. It discusses integrating the principles of computer science, life science, and statistics incorporated into statistical models using existing data, discovering patterns in data to extract the information, and predicting the changes and diseases based on this data and models. The initial chapters of the book cover the practical applications of artificial intelligence for disease prognosis & management. Further, the role of artificial intelligence and machine learning is discussed with reference to specific diseases like diabetes mellitus, cancer, mycobacterium tuberculosis, and Covid-19. The chapters provide working examples on how different types of healthcare data can be used to develop models and predict diseases using machine learning and artificial intelligence. The book also touches upon precision medicine, personalized medicine, and transfer learning, with the real examples. Further, it also discusses the use of machine learning and artificial intelligence for visualization, prediction, detection, and diagnosis of Covid -19. This book is a valuable source of information for programmers, healthcare professionals, and researchers interested in understanding the applications of artificial intelligence and machine learning in healthcare.



Machine Learning For Healthcare Analytics Projects


Machine Learning For Healthcare Analytics Projects
DOWNLOAD
Author : Eduonix Learning Solutions
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-10-30

Machine Learning For Healthcare Analytics Projects written by Eduonix Learning Solutions and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-30 with Computers categories.


Create real-world machine learning solutions using NumPy, pandas, matplotlib, and scikit-learn Key FeaturesDevelop a range of healthcare analytics projects using real-world datasetsImplement key machine learning algorithms using a range of libraries from the Python ecosystemAccomplish intermediate-to-complex tasks by building smart AI applications using neural network methodologiesBook Description Machine Learning (ML) has changed the way organizations and individuals use data to improve the efficiency of a system. ML algorithms allow strategists to deal with a variety of structured, unstructured, and semi-structured data. Machine Learning for Healthcare Analytics Projects is packed with new approaches and methodologies for creating powerful solutions for healthcare analytics. This book will teach you how to implement key machine learning algorithms and walk you through their use cases by employing a range of libraries from the Python ecosystem. You will build five end-to-end projects to evaluate the efficiency of Artificial Intelligence (AI) applications for carrying out simple-to-complex healthcare analytics tasks. With each project, you will gain new insights, which will then help you handle healthcare data efficiently. As you make your way through the book, you will use ML to detect cancer in a set of patients using support vector machines (SVMs) and k-Nearest neighbors (KNN) models. In the final chapters, you will create a deep neural network in Keras to predict the onset of diabetes in a huge dataset of patients. You will also learn how to predict heart diseases using neural networks. By the end of this book, you will have learned how to address long-standing challenges, provide specialized solutions for how to deal with them, and carry out a range of cognitive tasks in the healthcare domain. What you will learnExplore super imaging and natural language processing (NLP) to classify DNA sequencingDetect cancer based on the cell information provided to the SVMApply supervised learning techniques to diagnose autism spectrum disorder (ASD)Implement a deep learning grid and deep neural networks for detecting diabetesAnalyze data from blood pressure, heart rate, and cholesterol level tests using neural networksUse ML algorithms to detect autistic disordersWho this book is for Machine Learning for Healthcare Analytics Projects is for data scientists, machine learning engineers, and healthcare professionals who want to implement machine learning algorithms to build smart AI applications. Basic knowledge of Python or any programming language is expected to get the most from this book.



Introduction To Deep Learning For Healthcare


Introduction To Deep Learning For Healthcare
DOWNLOAD
Author : Cao Xiao
language : en
Publisher: Springer Nature
Release Date : 2021-11-11

Introduction To Deep Learning For Healthcare written by Cao Xiao and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-11 with Medical categories.


This textbook presents deep learning models and their healthcare applications. It focuses on rich health data and deep learning models that can effectively model health data. Healthcare data: Among all healthcare technologies, electronic health records (EHRs) had vast adoption and a significant impact on healthcare delivery in recent years. One crucial benefit of EHRs is to capture all the patient encounters with rich multi-modality data. Healthcare data include both structured and unstructured information. Structured data include various medical codes for diagnoses and procedures, lab results, and medication information. Unstructured data contain 1) clinical notes as text, 2) medical imaging data such as X-rays, echocardiogram, and magnetic resonance imaging (MRI), and 3) time-series data such as the electrocardiogram (ECG) and electroencephalogram (EEG). Beyond the data collected during clinical visits, patient self-generated/reported data start to grow thanks to wearable sensors’ increasing use. The authors present deep learning case studies on all data described. Deep learning models: Neural network models are a class of machine learning methods with a long history. Deep learning models are neural networks of many layers, which can extract multiple levels of features from raw data. Deep learning applied to healthcare is a natural and promising direction with many initial successes. The authors cover deep neural networks, convolutional neural networks, recurrent neural networks, embedding methods, autoencoders, attention models, graph neural networks, memory networks, and generative models. It’s presented with concrete healthcare case studies such as clinical predictive modeling, readmission prediction, phenotyping, x-ray classification, ECG diagnosis, sleep monitoring, automatic diagnosis coding from clinical notes, automatic deidentification, medication recommendation, drug discovery (drug property prediction and molecule generation), and clinical trial matching. This textbook targets graduate-level students focused on deep learning methods and their healthcare applications. It can be used for the concepts of deep learning and its applications as well. Researchers working in this field will also find this book to be extremely useful and valuable for their research.



Machine Learning For Health Informatics


Machine Learning For Health Informatics
DOWNLOAD
Author : Andreas Holzinger
language : en
Publisher: Springer
Release Date : 2016-12-09

Machine Learning For Health Informatics written by Andreas Holzinger and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-09 with Computers categories.


Machine learning (ML) is the fastest growing field in computer science, and Health Informatics (HI) is amongst the greatest application challenges, providing future benefits in improved medical diagnoses, disease analyses, and pharmaceutical development. However, successful ML for HI needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization. Tackling complex challenges needs both disciplinary excellence and cross-disciplinary networking without any boundaries. Following the HCI-KDD approach, in combining the best of two worlds, it is aimed to support human intelligence with machine intelligence. This state-of-the-art survey is an output of the international HCI-KDD expert network and features 22 carefully selected and peer-reviewed chapters on hot topics in machine learning for health informatics; they discuss open problems and future challenges in order to stimulate further research and international progress in this field.



Artificial Intelligence And Machine Learning In Healthcare


Artificial Intelligence And Machine Learning In Healthcare
DOWNLOAD
Author : Arman Kilic
language : en
Publisher: Academic Press
Release Date : 2025-10-01

Artificial Intelligence And Machine Learning In Healthcare written by Arman Kilic and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-10-01 with Medical categories.


Artificial Intelligence and Machine Learning in Healthcare discusses the potential of groundbreaking technologies on the delivery of care. A lot have been said about how artificial intelligence and machine learning can improve healthcare, however there are still many doubts and concerns among health professionals, all of which are addressed in this book. Sections cover History and Basic Overview of AI and ML, with differentiation of supervised, unsupervised and deep learning, Applications of AI and ML in Healthcare, The Future of Healthcare with AI, Challenges to Adopting AI in Healthcare, and ethics and legal processes for implementation.This book is a valuable resource for bioinformaticians, clinicians, graduate students and several members of biomedical field who needs to get up to speed on the revolutionary role of AI and Machine Learning in healthcare. - Provides an overview of AI and ML to the medical practitioner who may not be well versed in these fields - Encompasses a thorough review of what has been accomplished and demonstrated recently in the fields of AI and ML in healthcare - Discusses the future of AI and ML in healthcare, with a review of possible wearable technology and software and how they may be used for medical care



Demystifying Big Data And Machine Learning For Healthcare


Demystifying Big Data And Machine Learning For Healthcare
DOWNLOAD
Author : Prashant Natarajan
language : en
Publisher: CRC Press
Release Date : 2017-02-15

Demystifying Big Data And Machine Learning For Healthcare written by Prashant Natarajan and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-15 with Medical categories.


Healthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.