Machine Learning In Molecular Sciences

DOWNLOAD
Download Machine Learning In Molecular Sciences PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning In Molecular Sciences book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Machine Learning In Molecular Sciences
DOWNLOAD
Author : Chen Qu
language : en
Publisher: Springer
Release Date : 2023-09-23
Machine Learning In Molecular Sciences written by Chen Qu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-23 with Computers categories.
Machine learning and artificial intelligence have propelled research across various molecular science disciplines thanks to the rapid progress in computing hardware, algorithms, and data accumulation. This book presents recent machine learning applications in the broad research field of molecular sciences. Written by an international group of renowned experts, this edited volume covers both the machine learning methodologies and state-of-the-art machine learning applications in a wide range of topics in molecular sciences, from electronic structure theory to nuclear dynamics of small molecules, to the design and synthesis of large organic and biological molecules. This book is a valuable resource for researchers and students interested in applying machine learning in the research of molecular sciences.
Machine Learning In Molecular Sciences
DOWNLOAD
Author : Chen Qu
language : en
Publisher: Springer Nature
Release Date : 2023-10-01
Machine Learning In Molecular Sciences written by Chen Qu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-01 with Computers categories.
Machine learning and artificial intelligence have propelled research across various molecular science disciplines thanks to the rapid progress in computing hardware, algorithms, and data accumulation. This book presents recent machine learning applications in the broad research field of molecular sciences. Written by an international group of renowned experts, this edited volume covers both the machine learning methodologies and state-of-the-art machine learning applications in a wide range of topics in molecular sciences, from electronic structure theory to nuclear dynamics of small molecules, to the design and synthesis of large organic and biological molecules. This book is a valuable resource for researchers and students interested in applying machine learning in the research of molecular sciences.
Deep Learning For The Life Sciences
DOWNLOAD
Author : Bharath Ramsundar
language : en
Publisher: O'Reilly Media
Release Date : 2019-04-10
Deep Learning For The Life Sciences written by Bharath Ramsundar and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-10 with Science categories.
Deep learning has already achieved remarkable results in many fields. Now it’s making waves throughout the sciences broadly and the life sciences in particular. This practical book teaches developers and scientists how to use deep learning for genomics, chemistry, biophysics, microscopy, medical analysis, and other fields. Ideal for practicing developers and scientists ready to apply their skills to scientific applications such as biology, genetics, and drug discovery, this book introduces several deep network primitives. You’ll follow a case study on the problem of designing new therapeutics that ties together physics, chemistry, biology, and medicine—an example that represents one of science’s greatest challenges. Learn the basics of performing machine learning on molecular data Understand why deep learning is a powerful tool for genetics and genomics Apply deep learning to understand biophysical systems Get a brief introduction to machine learning with DeepChem Use deep learning to analyze microscopic images Analyze medical scans using deep learning techniques Learn about variational autoencoders and generative adversarial networks Interpret what your model is doing and how it’s working
Statistical Modeling And Machine Learning For Molecular Biology
DOWNLOAD
Author : Alan Moses
language : en
Publisher: CRC Press
Release Date : 2017-01-06
Statistical Modeling And Machine Learning For Molecular Biology written by Alan Moses and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-06 with Computers categories.
• Assumes no background in statistics or computers • Covers most major types of molecular biological data • Covers the statistical and machine learning concepts of most practical utility (P-values, clustering, regression, regularization and classification) • Intended for graduate students beginning careers in molecular biology, systems biology, bioengineering and genetics
Machine Learning In Chemistry
DOWNLOAD
Author : Hugh M. Cartwright
language : en
Publisher: Royal Society of Chemistry
Release Date : 2020-07-15
Machine Learning In Chemistry written by Hugh M. Cartwright and has been published by Royal Society of Chemistry this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-15 with Science categories.
Progress in the application of machine learning (ML) to the physical and life sciences has been rapid. A decade ago, the method was mainly of interest to those in computer science departments, but more recently ML tools have been developed that show significant potential across wide areas of science. There is a growing consensus that ML software, and related areas of artificial intelligence, may, in due course, become as fundamental to scientific research as computers themselves. Yet a perception remains that ML is obscure or esoteric, that only computer scientists can really understand it, and that few meaningful applications in scientific research exist. This book challenges that view. With contributions from leading research groups, it presents in-depth examples to illustrate how ML can be applied to real chemical problems. Through these examples, the reader can both gain a feel for what ML can and cannot (so far) achieve, and also identify characteristics that might make a problem in physical science amenable to a ML approach. This text is a valuable resource for scientists who are intrigued by the power of machine learning and want to learn more about how it can be applied in their own field.
Machine Learning In Complex Networks
DOWNLOAD
Author : Thiago Christiano Silva
language : en
Publisher: Springer
Release Date : 2016-01-28
Machine Learning In Complex Networks written by Thiago Christiano Silva and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-01-28 with Computers categories.
This book presents the features and advantages offered by complex networks in the machine learning domain. In the first part, an overview on complex networks and network-based machine learning is presented, offering necessary background material. In the second part, we describe in details some specific techniques based on complex networks for supervised, non-supervised, and semi-supervised learning. Particularly, a stochastic particle competition technique for both non-supervised and semi-supervised learning using a stochastic nonlinear dynamical system is described in details. Moreover, an analytical analysis is supplied, which enables one to predict the behavior of the proposed technique. In addition, data reliability issues are explored in semi-supervised learning. Such matter has practical importance and is not often found in the literature. With the goal of validating these techniques for solving real problems, simulations on broadly accepted databases are conducted. Still in this book, we present a hybrid supervised classification technique that combines both low and high orders of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features, while the latter measures the compliance of the test instances with the pattern formation of the data. We show that the high level technique can realize classification according to the semantic meaning of the data. This book intends to combine two widely studied research areas, machine learning and complex networks, which in turn will generate broad interests to scientific community, mainly to computer science and engineering areas.
Deep Learning In Biology And Medicine
DOWNLOAD
Author : Davide Bacciu
language : en
Publisher: World Scientific
Release Date : 2022-01-17
Deep Learning In Biology And Medicine written by Davide Bacciu and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-17 with Computers categories.
Biology, medicine and biochemistry have become data-centric fields for which Deep Learning methods are delivering groundbreaking results. Addressing high impact challenges, Deep Learning in Biology and Medicine provides an accessible and organic collection of Deep Learning essays on bioinformatics and medicine. It caters for a wide readership, ranging from machine learning practitioners and data scientists seeking methodological knowledge to address biomedical applications, to life science specialists in search of a gentle reference for advanced data analytics.With contributions from internationally renowned experts, the book covers foundational methodologies in a wide spectrum of life sciences applications, including electronic health record processing, diagnostic imaging, text processing, as well as omics-data processing. This survey of consolidated problems is complemented by a selection of advanced applications, including cheminformatics and biomedical interaction network analysis. A modern and mindful approach to the use of data-driven methodologies in the life sciences also requires careful consideration of the associated societal, ethical, legal and transparency challenges, which are covered in the concluding chapters of this book.
Deep Learning In Science
DOWNLOAD
Author : Pierre Baldi
language : en
Publisher:
Release Date : 2021
Deep Learning In Science written by Pierre Baldi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with Machine learning categories.
Artificial Intelligence And Molecular Biology
DOWNLOAD
Author : Lawrence Hunter
language : en
Publisher:
Release Date : 1993
Artificial Intelligence And Molecular Biology written by Lawrence Hunter and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993 with Computers categories.
These original contributions provide a current sampling of AI approaches to problems of biological significance; they are the first to treat the computational needs of the biology community hand-in-hand with appropriate advances in artificial intelligence. The enormous amount of data generated by the Human Genome Project and other large-scale biological research has created a rich and challenging domain for research in artificial intelligence. These original contributions provide a current sampling of AI approaches to problems of biological significance; they are the first to treat the computational needs of the biology community hand-in-hand with appropriate advances in artificial intelligence. Focusing on novel technologies and approaches, rather than on proven applications, they cover genetic sequence analysis, protein structure representation and prediction, automated data analysis aids, and simulation of biological systems. A brief introductory primer on molecular biology and Al gives computer scientists sufficient background to understand much of the biology discussed in the book. Lawrence Hunter is Director of the Machine Learning Project at the National Library of Medicine, National Institutes of Health.
Machine Learning In Chemistry
DOWNLOAD
Author : Jon Paul Janet
language : en
Publisher: American Chemical Society
Release Date : 2020-05-28
Machine Learning In Chemistry written by Jon Paul Janet and has been published by American Chemical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-28 with Science categories.
Recent advances in machine learning or artificial intelligence for vision and natural language processing that have enabled the development of new technologies such as personal assistants or self-driving cars have brought machine learning and artificial intelligence to the forefront of popular culture. The accumulation of these algorithmic advances along with the increasing availability of large data sets and readily available high performance computing has played an important role in bringing machine learning applications to such a wide range of disciplines. Given the emphasis in the chemical sciences on the relationship between structure and function, whether in biochemistry or in materials chemistry, adoption of machine learning by chemistsderivations where they are important