[PDF] Machine Learning Series - eBooks Review

Machine Learning Series


Machine Learning Series
DOWNLOAD

Download Machine Learning Series PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning Series book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Machine Learning With Pytorch And Scikit Learn


Machine Learning With Pytorch And Scikit Learn
DOWNLOAD
Author : Sebastian Raschka
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-02-25

Machine Learning With Pytorch And Scikit Learn written by Sebastian Raschka and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-25 with Computers categories.


This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch s simple to code framework. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Learn applied machine learning with a solid foundation in theory Clear, intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practices Book DescriptionMachine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learn Explore frameworks, models, and techniques for machines to learn from data Use scikit-learn for machine learning and PyTorch for deep learning Train machine learning classifiers on images, text, and more Build and train neural networks, transformers, and boosting algorithms Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch. Before you get started with this book, you’ll need a good understanding of calculus, as well as linear algebra.



Machine Learning For Time Series With Python


Machine Learning For Time Series With Python
DOWNLOAD
Author : Ben Auffarth
language : en
Publisher: Packt Publishing
Release Date : 2021-10-29

Machine Learning For Time Series With Python written by Ben Auffarth and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-29 with categories.


Become proficient in deriving insights from time-series data and analyzing a model's performance Key Features: Explore popular and modern machine learning methods including the latest online and deep learning algorithms Learn to increase the accuracy of your predictions by matching the right model with the right problem Master time-series via real-world case studies on operations management, digital marketing, finance, and healthcare Book Description: Machine learning has emerged as a powerful tool to understand hidden complexities in time-series datasets, which frequently need to be analyzed in areas as diverse as healthcare, economics, digital marketing, and social sciences. These datasets are essential for forecasting and predicting outcomes or for detecting anomalies to support informed decision making. This book covers Python basics for time-series and builds your understanding of traditional autoregressive models as well as modern non-parametric models. You will become confident with loading time-series datasets from any source, deep learning models like recurrent neural networks and causal convolutional network models, and gradient boosting with feature engineering. Machine Learning for Time-Series with Python explains the theory behind several useful models and guides you in matching the right model to the right problem. The book also includes real-world case studies covering weather, traffic, biking, and stock market data. By the end of this book, you will be proficient in effectively analyzing time-series datasets with machine learning principles. What You Will Learn: Understand the main classes of time-series and learn how to detect outliers and patterns Choose the right method to solve time-series problems Characterize seasonal and correlation patterns through autocorrelation and statistical techniques Get to grips with time-series data visualization Understand classical time-series models like ARMA and ARIMA Implement deep learning models like Gaussian processes and transformers and state-of-the-art machine learning models Become familiar with many libraries like prophet, xgboost, and TensorFlow Who this book is for: This book is ideal for data analysts, data scientists, and Python developers who are looking to perform time-series analysis to effectively predict outcomes. Basic knowledge of the Python language is essential. Familiarity with statistics is desirable.



Deep Learning


Deep Learning
DOWNLOAD
Author : Ian Goodfellow
language : en
Publisher: MIT Press
Release Date : 2016-11-10

Deep Learning written by Ian Goodfellow and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-10 with Computers categories.


An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.



Foundations Of Machine Learning Second Edition


Foundations Of Machine Learning Second Edition
DOWNLOAD
Author : Mehryar Mohri
language : en
Publisher: MIT Press
Release Date : 2018-12-25

Foundations Of Machine Learning Second Edition written by Mehryar Mohri and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-25 with Computers categories.


A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.



Machine Learning Revised And Updated Edition


Machine Learning Revised And Updated Edition
DOWNLOAD
Author : Ethem Alpaydin
language : en
Publisher: MIT Press
Release Date : 2021-08-17

Machine Learning Revised And Updated Edition written by Ethem Alpaydin and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-17 with Computers categories.


MIT presents a concise primer on machine learning—computer programs that learn from data and the basis of applications like voice recognition and driverless cars. No in-depth knowledge of math or programming required! Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition—as well as some we don’t yet use every day, including driverless cars. It is the basis for a new approach to artificial intelligence that aims to program computers to use example data or past experience to solve a given problem. In this volume in the MIT Press Essential Knowledge series, Ethem Alpaydin offers a concise and accessible overview of “the new AI.” This expanded edition offers new material on such challenges facing machine learning as privacy, security, accountability, and bias. Alpaydin explains that as Big Data has grown, the theory of machine learning—the foundation of efforts to process that data into knowledge—has also advanced. He covers: • The evolution of machine learning • Important learning algorithms and example applications • Using machine learning algorithms for pattern recognition • Artificial neural networks inspired by the human brain • Algorithms that learn associations between instances • Reinforcement learning • Transparency, explainability, and fairness in machine learning • The ethical and legal implicates of data-based decision making A comprehensive introduction to machine learning, this book does not require any previous knowledge of mathematics or programming—making it accessible for everyday readers and easily adoptable for classroom syllabi.



Automated Machine Learning


Automated Machine Learning
DOWNLOAD
Author : Frank Hutter
language : en
Publisher: Springer
Release Date : 2019-05-17

Automated Machine Learning written by Frank Hutter and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-17 with Computers categories.


This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.



Machine Learning Using R


Machine Learning Using R
DOWNLOAD
Author : Karthik Ramasubramanian
language : en
Publisher: Apress
Release Date : 2019-01-04

Machine Learning Using R written by Karthik Ramasubramanian and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-04 with Computers categories.


Examine the latest technological advancements in building a scalable machine-learning model with big data using R. This second edition shows you how to work with a machine-learning algorithm and use it to build a ML model from raw data. You will see how to use R programming with TensorFlow, thus avoiding the effort of learning Python if you are only comfortable with R. As in the first edition, the authors have kept the fine balance of theory and application of machine learning through various real-world use-cases which gives you a comprehensive collection of topics in machine learning. New chapters in this edition cover time series models and deep learning. What You'll Learn Understand machine learning algorithms using R Master the process of building machine-learning models Cover the theoretical foundations of machine-learning algorithms See industry focused real-world use cases Tackle time series modeling in R Apply deep learning using Keras and TensorFlow in R Who This Book is For Data scientists, data science professionals, and researchers in academia who want to understand the nuances of machine-learning approaches/algorithms in practice using R.



Machine Learning


Machine Learning
DOWNLOAD
Author : Andrew Park
language : en
Publisher:
Release Date : 2020-01-21

Machine Learning written by Andrew Park and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-21 with categories.


Master the world of Machine Learning and Data Science with this comprehensive 2-in-1 bundle. If you want to learn more about Machine Learning and Data Science or how to master them with Python quickly and easily, then keep reading. Data Science and Machine Learning are the biggest buzzwords in the business world nowadays. Many businesses know the importance of collecting information, but as they can collect so much data in a short period, the real question is: "what is the next step?" Data Science includes all the different procedures that must be implemented when working with data: collecting and cleaning them, analyzing them, applying Machine Learning algorithms and models, and then presenting your findings from the analysis with some good data visualizations. Machines and automation represent a huge part of our daily life. They are becoming part of our experience, and existence. Artificial Intelligence is currently one of the most thriving fields any programmer would wish to delve into, and for a good reason: this is the future! Simply put, Machine Learning is about teaching machines to think and make decisions as we would. The difference between the way machines learn and the way we do is that while for the most part we learn from experiences, machines learn from data. In book one, PYTHON MACHINE LEARNING, you will learn: What is Machine Learning and how it is applied in real-world situations Understanding the differences between Machine Learning, Deep Learning, and Artificial Intelligence Machine learning training models, Regression techniques and Linear Regression in Python How to use Lists and Modules in Python The 12 essential libraries for Machine Learning in Python Artificial Neural Networks And Much More! In book two, PYTHON DATA SCIENCE, you will learn: What Data Science is all about and why so many companies are using it to give them a competitive edge. Why Python and how to use it to implement Data Science The main Data Structures & Object-Oriented Programming, Functions and Modules in Python with practical codes and exercises The 7 most important algorithms and models in Data Science Data Aggregation, Group Operations, Databases and Data in the Cloud 9 important Data Mining techniques in Data Science And So Much More! Where most books only focus on how collecting and cleaning the data, this book goes further, providing guidance on how to perform a proper analysis in order to extract precious information that may be vital for a business. Don't miss the opportunity to master the key points of Machine Learning technology and understand how researchers are breaking the boundaries of Data Science to mimic human intelligence in machines. Even if some concepts of Machine Learning algorithms can appear complex to most computer programming beginners, this book takes the time to explain them in a simple and concise way. Understanding Machine Learning and Data Science is easier than it looks. You just need the right guidance. And this book provides all the knowledge you need in a simple and practical way. Regardless of your previous experience, you will learn, the techniques to manipulate and process datasets, the principles of Python programming, and its most important real-world applications. Would You Like To Know More?Scroll Up and Click on the BUY NOW Button to Get Your Copy!



Objectiveinterpretationof Fequencyresponseanalysisofpowertransformers


Objectiveinterpretationof Fequencyresponseanalysisofpowertransformers
DOWNLOAD
Author : Mehran Tahir
language : en
Publisher: BoD – Books on Demand
Release Date : 2025-02-14

Objectiveinterpretationof Fequencyresponseanalysisofpowertransformers written by Mehran Tahir and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-14 with Technology & Engineering categories.


Frequency Response Analysis (FRA) is a powerful diagnostic tool that offers deep insights into transformer health, though its interpretation presents significant challenges. This book introduces advanced techniques and intelligent methodologies for assessing transformer winding distortion and deformation through FRA. Drawing on extensive industry experience and academic research, it explores various methods for evaluating transformer winding conditions and presents in-depth analyses of fault mechanisms and failure modes from real-world data on over 80 power transformers. The causes, symptoms, and consequences of component failures are identified, offering valuable insights into transformer health. An advanced transformer modeling method is introduced to improve fault simulations, which can also be used for overvoltage prediction and transient analysis. Real-world case studies offer practical guidelines for interpreting FRA measurements, contributing to more accurate diagnostics and informed decision-making regarding transformer maintenance and replacement. This comprehensive resource serves as a valuable reference for professionals and researchers aiming to improve transformer reliability and optimize power system performance.



Data Science And Machine Learning Series Deep Learning Facts Frameworks And Functionality


Data Science And Machine Learning Series Deep Learning Facts Frameworks And Functionality
DOWNLOAD
Author : Zacharias Voulgaris
language : en
Publisher:
Release Date : 2018

Data Science And Machine Learning Series Deep Learning Facts Frameworks And Functionality written by Zacharias Voulgaris and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with categories.


Explore deep learning and how it applies to data science and compares to traditional machine learning. See how deep learning works in terms of both architecture and design, and learn about different frameworks including Apache MXNet, PyTorch, and TensorFlow. Related concepts are covered including Artificial Neural Networks (ANNs), Multi-Layer Perceptrons (MLPs), and Natural Language Processing (NLP). Programming languages including Python and Julia are discussed. Here is a link to all of Zacharias Voulgaris' machine learning, data science, and artificial intelligence (AI) videos.