Machine Learning With Rust

DOWNLOAD
Download Machine Learning With Rust PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning With Rust book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Practical Machine Learning With Rust
DOWNLOAD
Author : Joydeep Bhattacharjee
language : en
Publisher: Apress
Release Date : 2019-12-10
Practical Machine Learning With Rust written by Joydeep Bhattacharjee and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-10 with Mathematics categories.
Explore machine learning in Rust and learn about the intricacies of creating machine learning applications. This book begins by covering the important concepts of machine learning such as supervised, unsupervised, and reinforcement learning, and the basics of Rust. Further, you’ll dive into the more specific fields of machine learning, such as computer vision and natural language processing, and look at the Rust libraries that help create applications for those domains. We will also look at how to deploy these applications either on site or over the cloud. After reading Practical Machine Learning with Rust, you will have a solid understanding of creating high computation libraries using Rust. Armed with the knowledge of this amazing language, you will be able to create applications that are more performant, memory safe, and less resource heavy. What You Will Learn Write machine learning algorithms in Rust Use Rust libraries for different tasks in machine learning Create concise Rust packages for your machine learning applications Implement NLP and computer vision in Rust Deploy your code in the cloud and on bare metal servers Who This Book Is For Machine learning engineers and software engineers interested in building machine learning applications in Rust.
Practical Rust Projects
DOWNLOAD
Author : Shing Lyu
language : en
Publisher: Apress
Release Date : 2020-02-27
Practical Rust Projects written by Shing Lyu and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-27 with Computers categories.
Go beyond the basics and build complete applications using the Rust programming language. The applications in this book include a high-performance web client, a microcontroller (for a robot, for example), a game, an app that runs on Android, and an application that incorporates AI and machine learning. Each chapter will be organized in the following format: what this kind of application looks like; requirements and user stories of our example program; an introduction to the Rust libraries used; the actual implementation of the example program, including common pitfalls and their solutions; and a brief comparison of libraries for building each application, if there is no clear winner. Practical Rust Projects will open your eyes to the world of practical applications of Rust. After reading the book, you will be able to apply your Rust knowledge to build your own projects. What You Will Learn Write Rust code that runs on microcontrollers Build a 2D game Create Rust-based mobile Android applications Use Rust to build AI and machine learning applications Who This Book Is For Someone with basic Rust knowledge, wishing to learn more about how to apply Rust in a real-world scenario.
The Rust Programming Language Covers Rust 2018
DOWNLOAD
Author : Steve Klabnik
language : en
Publisher: No Starch Press
Release Date : 2019-08-12
The Rust Programming Language Covers Rust 2018 written by Steve Klabnik and has been published by No Starch Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-12 with Computers categories.
The official book on the Rust programming language, written by the Rust development team at the Mozilla Foundation, fully updated for Rust 2018. The Rust Programming Language is the official book on Rust: an open source systems programming language that helps you write faster, more reliable software. Rust offers control over low-level details (such as memory usage) in combination with high-level ergonomics, eliminating the hassle traditionally associated with low-level languages. The authors of The Rust Programming Language, members of the Rust Core Team, share their knowledge and experience to show you how to take full advantage of Rust's features--from installation to creating robust and scalable programs. You'll begin with basics like creating functions, choosing data types, and binding variables and then move on to more advanced concepts, such as: Ownership and borrowing, lifetimes, and traits Using Rust's memory safety guarantees to build fast, safe programs Testing, error handling, and effective refactoring Generics, smart pointers, multithreading, trait objects, and advanced pattern matching Using Cargo, Rust's built-in package manager, to build, test, and document your code and manage dependencies How best to use Rust's advanced compiler with compiler-led programming techniques You'll find plenty of code examples throughout the book, as well as three chapters dedicated to building complete projects to test your learning: a number guessing game, a Rust implementation of a command line tool, and a multithreaded server. New to this edition: An extended section on Rust macros, an expanded chapter on modules, and appendixes on Rust development tools and editions.
Machine Learning With Rust
DOWNLOAD
Author : Keiko Nakamura
language : en
Publisher:
Release Date : 2024-01-31
Machine Learning With Rust written by Keiko Nakamura and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-01-31 with Computers categories.
In this stimulating journey of Rust, you'll learn how to use the Rust programming language in conjunction with machine learning. It's not a full guide to learning machine learning with Rust. Instead, it's more of a journey that shows you what's possible when you use Rust to solve machine learning problems. Some people like Rust because it is quick and safe. This book shows how those qualities can help machine learning a lot. To begin, we will show you what Rust is and how it works. This is so that everyone, even those who are new to Rust, can follow along. Then, we look at some basic machine learning concepts, such as linear and logistic regression, and show how to use Rust's tools and libraries to make these ideas work. You will learn more complex techniques like decision trees, support vector machines, and how to work with data as we go along. It goes all the way up to neural networks and image recognition, and we show you how to use Rust for these types of tasks step by step. We use real-world examples, such as COVID data and the CIFAR-10 image set, to show how Rust works with issues that come up in the real world. This book is all about discovery and experimentation. To see what you can do with them, we use various Rust tools for machine learning. It's a fun way to see how Rust can be used in machine learning, and it will make you want to try new things and learn more on your own. This is only the beginning; there is so much more to uncover as you continue to explore machine learning with Rust. Key Learnings Exploit Rust's efficiency and safety to construct fast machine learning models. Use Rust's ndarray crate for numerical computations to manipulate complex machine learning data. Find out how Rust's extensible machine learning framework, linfa, works across algorithms. Use Rust's precision and speed to construct linear and logistic regression. See how Rust crates simplify decision trees and random forests for prediction and categorization. Learn to implement and optimize probabilistic classifiers, SVMs and closest neighbor methods in Rust. Use Rust's computing power to study neural networks and CNNs for picture recognition and processing. Apply learnt strategies to COVID and CIFAR-10 datasets to address realistic problems and obtain insights. Table of Content Rust Basics for Machine Learning Data Wrangling with Rust Linear Regression by Example Logistic Regression for Classification Decision Trees in Action Mastering Random Forests Support Vector Machines in Action Simplifying Naive Bayes and k-NN Crafting Neural Networks with Rust
Rust In Action
DOWNLOAD
Author : Tim McNamara
language : en
Publisher: Simon and Schuster
Release Date : 2021-08-10
Rust In Action written by Tim McNamara and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-10 with Computers categories.
Rust in Action introduces the Rust programming language by exploring numerous systems programming concepts and techniques.You'll be learning Rust by delving into how computers work under the hood. You'll find yourself playing with persistent storage, memory, networking and even tinkering with CPU instructions. The book takes you through using Rust to extend other applications and teaches you tricks to write blindingly fast code. You'll also discover parallel and concurrent programming. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
Python Machine Learning
DOWNLOAD
Author : Sebastian Raschka
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-09-23
Python Machine Learning written by Sebastian Raschka and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-23 with Computers categories.
Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.
Grokking Deep Learning
DOWNLOAD
Author : Andrew Trask
language : en
Publisher: Manning Publications
Release Date : 2019-01-25
Grokking Deep Learning written by Andrew Trask and has been published by Manning Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-25 with Computers categories.
Summary Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning, a branch of artificial intelligence, teaches computers to learn by using neural networks, technology inspired by the human brain. Online text translation, self-driving cars, personalized product recommendations, and virtual voice assistants are just a few of the exciting modern advancements possible thanks to deep learning. About the Book Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare! When you're done, you'll be fully prepared to move on to mastering deep learning frameworks. What's inside The science behind deep learning Building and training your own neural networks Privacy concepts, including federated learning Tips for continuing your pursuit of deep learning About the Reader For readers with high school-level math and intermediate programming skills. About the Author Andrew Trask is a PhD student at Oxford University and a research scientist at DeepMind. Previously, Andrew was a researcher and analytics product manager at Digital Reasoning, where he trained the world's largest artificial neural network and helped guide the analytics roadmap for the Synthesys cognitive computing platform. Table of Contents Introducing deep learning: why you should learn it Fundamental concepts: how do machines learn? Introduction to neural prediction: forward propagation Introduction to neural learning: gradient descent Learning multiple weights at a time: generalizing gradient descent Building your first deep neural network: introduction to backpropagation How to picture neural networks: in your head and on paper Learning signal and ignoring noise:introduction to regularization and batching Modeling probabilities and nonlinearities: activation functions Neural learning about edges and corners: intro to convolutional neural networks Neural networks that understand language: king - man + woman == ? Neural networks that write like Shakespeare: recurrent layers for variable-length data Introducing automatic optimization: let's build a deep learning framework Learning to write like Shakespeare: long short-term memory Deep learning on unseen data: introducing federated learning Where to go from here: a brief guide
Hands On Machine Learning With Scikit Learn Keras And Tensorflow
DOWNLOAD
Author : Aurélien Géron
language : en
Publisher: O'Reilly Media
Release Date : 2019-09-05
Hands On Machine Learning With Scikit Learn Keras And Tensorflow written by Aurélien Géron and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-05 with Computers categories.
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets
Programming Rust
DOWNLOAD
Author : Jim Blandy
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-11-21
Programming Rust written by Jim Blandy and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-21 with Computers categories.
Rust is a new systems programming language that combines the performance and low-level control of C and C++ with memory safety and thread safety. Rust’s modern, flexible types ensure your program is free of null pointer dereferences, double frees, dangling pointers, and similar bugs, all at compile time, without runtime overhead. In multi-threaded code, Rust catches data races at compile time, making concurrency much easier to use. Written by two experienced systems programmers, this book explains how Rust manages to bridge the gap between performance and safety, and how you can take advantage of it. Topics include: How Rust represents values in memory (with diagrams) Complete explanations of ownership, moves, borrows, and lifetimes Cargo, rustdoc, unit tests, and how to publish your code on crates.io, Rust’s public package repository High-level features like generic code, closures, collections, and iterators that make Rust productive and flexible Concurrency in Rust: threads, mutexes, channels, and atomics, all much safer to use than in C or C++ Unsafe code, and how to preserve the integrity of ordinary code that uses it Extended examples illustrating how pieces of the language fit together
Learning Rust
DOWNLOAD
Author : Paul Johnson
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-11-24
Learning Rust written by Paul Johnson and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-24 with Computers categories.
Start building fast and robust applications with the power of Rust by your side About This Book Get started with the language to build scalable and high performance applications This book will help C#/C++ developers gain better performance and memory management Discover the power of Rust when developing concurrent applications for large and scalable software Who This Book Is For The book is for absolute beginners to Rust, who want to build high performance, concurrent applications for their projects. It is suitable for developers who have a basic knowledge of programming and developers who are using the C#/C++ language to write their applications. No knowledge of Rust is expected. What You Will Learn Set up Rust for Windows, Linux, and OS X Write effective code using Rust Expand your Rust applications using libraries Interface existing non-Rust libraries with your Rust applications Use the standard library within your applications Understand memory management within Rust and speed efficiency when passing variables Create more complex data types Study concurrency in Rust with multi-threaded applications and sync threading techniques to improve the performance of an application problem In Detail Rust is a highly concurrent and high performance language that focuses on safety and speed, memory management, and writing clean code. It also guarantees thread safety, and its aim is to improve the performance of existing applications. Its potential is shown by the fact that it has been backed by Mozilla to solve the critical problem of concurrency. Learning Rust will teach you to build concurrent, fast, and robust applications. From learning the basic syntax to writing complex functions, this book will is your one stop guide to get up to speed with the fundamentals of Rust programming. We will cover the essentials of the language, including variables, procedures, output, compiling, installing, and memory handling. You will learn how to write object-oriented code, work with generics, conduct pattern matching, and build macros. You will get to know how to communicate with users and other services, as well as getting to grips with generics, scoping, and more advanced conditions. You will also discover how to extend the compilation unit in Rust. By the end of this book, you will be able to create a complex application in Rust to move forward with. Style and approach This comprehensive book will focus on the Rust syntax, functions, data types, and conducting pattern matching for programmers. It is divided into three parts and each part of the book has an objective to enable the readers to create their own applications at an appropriate level, ultimately towards creating complex applications.