[PDF] Machine Learning With The Elastic Stack Second Edition - eBooks Review

Machine Learning With The Elastic Stack Second Edition


Machine Learning With The Elastic Stack Second Edition
DOWNLOAD

Download Machine Learning With The Elastic Stack Second Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Machine Learning With The Elastic Stack Second Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Machine Learning With The Elastic Stack


Machine Learning With The Elastic Stack
DOWNLOAD
Author : Rich Collier
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-05-31

Machine Learning With The Elastic Stack written by Rich Collier and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-31 with Computers categories.


Discover expert techniques for combining machine learning with the analytic capabilities of Elastic Stack and uncover actionable insights from your data Key FeaturesIntegrate machine learning with distributed search and analyticsPreprocess and analyze large volumes of search data effortlesslyOperationalize machine learning in a scalable, production-worthy wayBook Description Elastic Stack, previously known as the ELK stack, is a log analysis solution that helps users ingest, process, and analyze search data effectively. With the addition of machine learning, a key commercial feature, the Elastic Stack makes this process even more efficient. This updated second edition of Machine Learning with the Elastic Stack provides a comprehensive overview of Elastic Stack's machine learning features for both time series data analysis as well as for classification, regression, and outlier detection. The book starts by explaining machine learning concepts in an intuitive way. You'll then perform time series analysis on different types of data, such as log files, network flows, application metrics, and financial data. As you progress through the chapters, you'll deploy machine learning within Elastic Stack for logging, security, and metrics. Finally, you'll discover how data frame analysis opens up a whole new set of use cases that machine learning can help you with. By the end of this Elastic Stack book, you'll have hands-on machine learning and Elastic Stack experience, along with the knowledge you need to incorporate machine learning in your distributed search and data analysis platform. What you will learnFind out how to enable the ML commercial feature in the Elastic StackUnderstand how Elastic machine learning is used to detect different types of anomalies and make predictionsApply effective anomaly detection to IT operations, security analytics, and other use casesUtilize the results of Elastic ML in custom views, dashboards, and proactive alertingTrain and deploy supervised machine learning models for real-time inferenceDiscover various tips and tricks to get the most out of Elastic machine learningWho this book is for If you’re a data professional looking to gain insights into Elasticsearch data without having to rely on a machine learning specialist or custom development, then this Elastic Stack machine learning book is for you. You'll also find this book useful if you want to integrate machine learning with your observability, security, and analytics applications. Working knowledge of the Elastic Stack is needed to get the most out of this book.



Machine Learning With The Elastic Stack


Machine Learning With The Elastic Stack
DOWNLOAD
Author : Rich Collier
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-01-31

Machine Learning With The Elastic Stack written by Rich Collier and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-31 with Computers categories.


Leverage Elastic Stack’s machine learning features to gain valuable insight from your data Key FeaturesCombine machine learning with the analytic capabilities of Elastic StackAnalyze large volumes of search data and gain actionable insight from themUse external analytical tools with your Elastic Stack to improve its performanceBook Description Machine Learning with the Elastic Stack is a comprehensive overview of the embedded commercial features of anomaly detection and forecasting. The book starts with installing and setting up Elastic Stack. You will perform time series analysis on varied kinds of data, such as log files, network flows, application metrics, and financial data. As you progress through the chapters, you will deploy machine learning within the Elastic Stack for logging, security, and metrics. In the concluding chapters, you will see how machine learning jobs can be automatically distributed and managed across the Elasticsearch cluster and made resilient to failure. By the end of this book, you will understand the performance aspects of incorporating machine learning within the Elastic ecosystem and create anomaly detection jobs and view results from Kibana directly. What you will learnInstall the Elastic Stack to use machine learning featuresUnderstand how Elastic machine learning is used to detect a variety of anomaly typesApply effective anomaly detection to IT operations and security analyticsLeverage the output of Elastic machine learning in custom views, dashboards, and proactive alertingCombine your created jobs to correlate anomalies of different layers of infrastructureLearn various tips and tricks to get the most out of Elastic machine learningWho this book is for If you are a data professional eager to gain insight on Elasticsearch data without having to rely on a machine learning specialist or custom development, Machine Learning with the Elastic Stack is for you. Those looking to integrate machine learning within their search and analytics applications will also find this book very useful. Prior experience with the Elastic Stack is needed to get the most out of this book.



Machine Learning With The Elastic Stack Second Edition


Machine Learning With The Elastic Stack Second Edition
DOWNLOAD
Author : Rich Collier
language : en
Publisher:
Release Date : 2021

Machine Learning With The Elastic Stack Second Edition written by Rich Collier and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.


Discover expert techniques for combining machine learning with the analytic capabilities of Elastic Stack and uncover actionable insights from your data Key Features Integrate machine learning with distributed search and analytics Preprocess and analyze large volumes of search data effortlessly Operationalize machine learning in a scalable, production-worthy way Book Description Elastic Stack, previously known as the ELK stack, is a log analysis solution that helps users ingest, process, and analyze search data effectively. With the addition of machine learning, a key commercial feature, the Elastic Stack makes this process even more efficient. This updated second edition of Machine Learning with the Elastic Stack provides a comprehensive overview of Elastic Stack's machine learning features for both time series data analysis as well as for classification, regression, and outlier detection. The book starts by explaining machine learning concepts in an intuitive way. You'll then perform time series analysis on different types of data, such as log files, network flows, application metrics, and financial data. As you progress through the chapters, you'll deploy machine learning within Elastic Stack for logging, security, and metrics. Finally, you'll discover how data frame analysis opens up a whole new set of use cases that machine learning can help you with. By the end of this Elastic Stack book, you'll have hands-on machine learning and Elastic Stack experience, along with the knowledge you need to incorporate machine learning in your distributed search and data analysis platform. What you will learn Find out how to enable the ML commercial feature in the Elastic Stack Understand how Elastic machine learning is used to detect different types of anomalies and make predictions Apply effective anomaly detection to IT operations, security analytics, and other use cases Utilize the results of Elastic ML in custom views, dashboards, and proactive alerting Train and deploy supervised machine learning models for real-time inference Discover various tips and tricks to get the most out of Elastic machine learning Who this book is for If you're a data professional looking to gain insights into Elasticsearch data without having to rely on a machine learning specialist or custom development, then this Elastic Stack machine learning book is for you. You'll also find this book useful if you want to integrate machine learning with your observability, security, ...



Learning Elastic Stack 7 0


Learning Elastic Stack 7 0
DOWNLOAD
Author : Pranav Shukla
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-05-31

Learning Elastic Stack 7 0 written by Pranav Shukla and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-31 with Computers categories.


A beginner's guide to storing, managing, and analyzing data with the updated features of Elastic 7.0 Key FeaturesGain access to new features and updates introduced in Elastic Stack 7.0Grasp the fundamentals of Elastic Stack including Elasticsearch, Logstash, and KibanaExplore useful tips for using Elastic Cloud and deploying Elastic Stack in production environmentsBook Description The Elastic Stack is a powerful combination of tools for techniques such as distributed search, analytics, logging, and visualization of data. Elastic Stack 7.0 encompasses new features and capabilities that will enable you to find unique insights into analytics using these techniques. This book will give you a fundamental understanding of what the stack is all about, and help you use it efficiently to build powerful real-time data processing applications. The first few sections of the book will help you understand how to set up the stack by installing tools, and exploring their basic configurations. You’ll then get up to speed with using Elasticsearch for distributed searching and analytics, Logstash for logging, and Kibana for data visualization. As you work through the book, you will discover the technique of creating custom plugins using Kibana and Beats. This is followed by coverage of the Elastic X-Pack, a useful extension for effective security and monitoring. You’ll also find helpful tips on how to use Elastic Cloud and deploy Elastic Stack in production environments. By the end of this book, you’ll be well versed with the fundamental Elastic Stack functionalities and the role of each component in the stack to solve different data processing problems. What you will learnInstall and configure an Elasticsearch architectureSolve the full-text search problem with ElasticsearchDiscover powerful analytics capabilities through aggregations using ElasticsearchBuild a data pipeline to transfer data from a variety of sources into Elasticsearch for analysisCreate interactive dashboards for effective storytelling with your data using KibanaLearn how to secure, monitor and use Elastic Stack’s alerting and reporting capabilitiesTake applications to an on-premise or cloud-based production environment with Elastic StackWho this book is for This book is for entry-level data professionals, software engineers, e-commerce developers, and full-stack developers who want to learn about Elastic Stack and how the real-time processing and search engine works for business analytics and enterprise search applications. Previous experience with Elastic Stack is not required, however knowledge of data warehousing and database concepts will be helpful.



Hands On Machine Learning With R


Hands On Machine Learning With R
DOWNLOAD
Author : Brad Boehmke
language : en
Publisher: CRC Press
Release Date : 2019-11-07

Hands On Machine Learning With R written by Brad Boehmke and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-07 with Business & Economics categories.


Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.



Elasticsearch In Action


Elasticsearch In Action
DOWNLOAD
Author : Radu Gheorghe
language : en
Publisher: Manning
Release Date : 2015-12-03

Elasticsearch In Action written by Radu Gheorghe and has been published by Manning this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-03 with Computers categories.


Summary Elasticsearch in Action teaches you how to build scalable search applications using Elasticsearch. You'll ramp up fast, with an informative overview and an engaging introductory example. Within the first few chapters, you'll pick up the core concepts you need to implement basic searches and efficient indexing. With the fundamentals well in hand, you'll go on to gain an organized view of how to optimize your design. Perfect for developers and administrators building and managing search-oriented applications. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Modern search seems like magic—you type a few words and the search engine appears to know what you want. With the Elasticsearch real-time search and analytics engine, you can give your users this magical experience without having to do complex low-level programming or understand advanced data science algorithms. You just install it, tweak it, and get on with your work. About the Book Elasticsearch in Action teaches you how to write applications that deliver professional quality search. As you read, you'll learn to add basic search features to any application, enhance search results with predictive analysis and relevancy ranking, and use saved data from prior searches to give users a custom experience. This practical book focuses on Elasticsearch's REST API via HTTP. Code snippets are written mostly in bash using cURL, so they're easily translatable to other languages. What's Inside What is a great search application? Building scalable search solutions Using Elasticsearch with any language Configuration and tuning About the Reader For developers and administrators building and managing search-oriented applications. About the Authors Radu Gheorghe is a search consultant and software engineer. Matthew Lee Hinman develops highly available, cloud-based systems. Roy Russo is a specialist in predictive analytics. Table of Contents PART 1 CORE ELASTICSEARCH FUNCTIONALITY Introducing Elasticsearch Diving into the functionality Indexing, updating, and deleting data Searching your data Analyzing your data Searching with relevancy Exploring your data with aggregations Relations among documents PART 2 ADVANCED ELASTICSEARCH FUNCTIONALITY Scaling out Improving performance Administering your cluster



Learning Kibana 7


Learning Kibana 7
DOWNLOAD
Author : Anurag Srivastava
language : en
Publisher:
Release Date : 2019-07-19

Learning Kibana 7 written by Anurag Srivastava and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-19 with Computers categories.




Getting Started With Elastic Stack 8 0


Getting Started With Elastic Stack 8 0
DOWNLOAD
Author : Asjad Athick
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-03-23

Getting Started With Elastic Stack 8 0 written by Asjad Athick and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-23 with Computers categories.


Use the Elastic Stack for search, security, and observability-related use cases while working with large amounts of data on-premise and on the cloud Key FeaturesLearn the core components of the Elastic Stack and how they work togetherBuild search experiences, monitor and observe your environments, and defend your organization from cyber attacksGet to grips with common architecture patterns and best practices for successfully deploying the Elastic StackBook Description The Elastic Stack helps you work with massive volumes of data to power use cases in the search, observability, and security solution areas. This three-part book starts with an introduction to the Elastic Stack with high-level commentary on the solutions the stack can be leveraged for. The second section focuses on each core component, giving you a detailed understanding of the component and the role it plays. You'll start by working with Elasticsearch to ingest, search, analyze, and store data for your use cases. Next, you'll look at Logstash, Beats, and Elastic Agent as components that can collect, transform, and load data. Later chapters help you use Kibana as an interface to consume Elastic solutions and interact with data on Elasticsearch. The last section explores the three main use cases offered on top of the Elastic Stack. You'll start with a full-text search and look at real-world outcomes powered by search capabilities. Furthermore, you'll learn how the stack can be used to monitor and observe large and complex IT environments. Finally, you'll understand how to detect, prevent, and respond to security threats across your environment. The book ends by highlighting architecture best practices for successful Elastic Stack deployments. By the end of this book, you'll be able to implement the Elastic Stack and derive value from it. What you will learnConfigure Elasticsearch clusters with different node types for various architecture patternsIngest different data sources into Elasticsearch using Logstash, Beats, and Elastic AgentBuild use cases on Kibana including data visualizations, dashboards, machine learning jobs, and alertsDesign powerful search experiences on top of your data using the Elastic StackSecure your organization and learn how the Elastic SIEM and Endpoint Security capabilities can helpExplore common architectural considerations for accommodating more complex requirementsWho this book is for Developers and solutions architects looking to get hands-on experience with search, security, and observability-related use cases on the Elastic Stack will find this book useful. This book will also help tech leads and product owners looking to understand the value and outcomes they can derive for their organizations using Elastic technology. No prior knowledge of the Elastic Stack is required.



Elastic Stack 8 X Cookbook


Elastic Stack 8 X Cookbook
DOWNLOAD
Author : Huage Chen
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-06-28

Elastic Stack 8 X Cookbook written by Huage Chen and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-28 with Computers categories.


Unlock the full potential of Elastic Stack for search, analytics, security, and observability and manage substantial data workloads in both on-premise and cloud environments Key Features Explore the diverse capabilities of the Elastic Stack through a comprehensive set of recipes Build search applications, analyze your data, and observe cloud-native applications Harness powerful machine learning and AI features to create data science and search applications Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionLearn how to make the most of the Elastic Stack (ELK Stack) products—including Elasticsearch, Kibana, Elastic Agent, and Logstash—to take data reliably and securely from any source, in any format, and then search, analyze, and visualize it in real-time. This cookbook takes a practical approach to unlocking the full potential of Elastic Stack through detailed recipes step by step. Starting with installing and ingesting data using Elastic Agent and Beats, this book guides you through data transformation and enrichment with various Elastic components and explores the latest advancements in search applications, including semantic search and Generative AI. You'll then visualize and explore your data and create dashboards using Kibana. As you progress, you'll advance your skills with machine learning for data science, get to grips with natural language processing, and discover the power of vector search. The book covers Elastic Observability use cases for log, infrastructure, and synthetics monitoring, along with essential strategies for securing the Elastic Stack. Finally, you'll gain expertise in Elastic Stack operations to effectively monitor and manage your system.What you will learn Discover techniques for collecting data from diverse sources Visualize data and create dashboards using Kibana to extract business insights Explore machine learning, vector search, and AI capabilities of Elastic Stack Handle data transformation and data formatting Build search solutions from the ingested data Leverage data science tools for in-depth data exploration Monitor and manage your system with Elastic Stack Who this book is for This book is for Elastic Stack users, developers, observability practitioners, and data professionals ranging from beginner to expert level. If you’re a developer, you’ll benefit from the easy-to-follow recipes for using APIs and features to build powerful applications, and if you’re an observability practitioner, this book will help you with use cases covering APM, Kubernetes, and cloud monitoring. For data engineers and AI enthusiasts, the book covers dedicated recipes on vector search and machine learning. No prior knowledge of the Elastic Stack is required.